Optimum Non-Slender Geometries of Revolution for Minimum Drag in Free-Molecular Row With Given Isoperimetric Constraints

Authors

  • S. C. Jain Defence Science Centre, Delhi

DOI:

https://doi.org/10.14429/dsj.38.4836

Keywords:

Molecular Flow, Isoperimetric Constraints

Abstract

The problem of determining the non-slender bodies of revolution having minimum drag in free-molecular flow region for given integral constraints has been solved with the calculus of variations. Optimum bodies for known values of surface area and volume are blunt nosed and value of drag coefficients C, decreases with the shape parameter H ( = 18 pie V2/S3). For given value of shape parameter, value of yf decreases as K increases.

References

Carter, W.J., J. Aerospace Sci., 24 (1971), 527.

Tan, H.S., J. Aerospace Sci., 25 (1958), 56.

Chang, 1.0, J. Aerospace Sci., 25 (1958). 57.

Tan, H.S., J. Aerospace Sci., 25 (1968), 263.

Tan, H. S., Quart. Appl. Math., 17 (1 959), 3 1 1.

Tan, H . S . , J. Aerospace Sci., 26 (1959). 360.

Miele, A., Theory of Optimum Aerodynamic Shapes, (Academic Press, New York), 1965, p 415.

Tan, H.S., Theory of Optimum Aerodynamic Shapes, (Academic Press, New York), 1965, p 423.

Tawakley, V.B. & Jain, S.C., Def. Sci. J., 21 (4), (1971), 227.

Large, E., J. Aerospace Sci., 29 (1) (1962),

Downloads

Published

2013-04-01

How to Cite

Jain, S. C. (2013). Optimum Non-Slender Geometries of Revolution for Minimum Drag in Free-Molecular Row With Given Isoperimetric Constraints. Defence Science Journal, 38(2), 183–190. https://doi.org/10.14429/dsj.38.4836

Issue

Section

General Papers

Most read articles by the same author(s)

1 2 > >>