Custom-Designed HI-V Semiconductor Mimstmctures Wed to the Ultimate Physical Limit : U I ~ - L a y e r GaAs/AUs ~uperhtticesa nd Delta- (Monolayer) Doping in GaAs/Al,Ga,-As Structures

Authors

  • K. Plog Max-Planck Institut fiir Festkorperforschung, D-7000 Stuttgart 80, FRG
  • R. Muralidharan Max-Planck Institut fiir Festkorperforschung, D-7000 Stuttgart 80, FRG

DOI:

https://doi.org/10.14429/dsj.39.4818

Keywords:

Semiconductor structures, Molecular beam epitaxy

Abstract

Two prototype artificially-layered semiconductor structures are presented in which the concept of microscopical structuring of solids is scaled to its ultimate physical limit normal to the crystal surface. In both the(G~AS),/(AIASm)~o no layer superlattice and in the delta- (or monolayer)doped G~AS/AI~G~,-s~truAcStu res, which have been grown by molecular beam epitaxy, the characteristic material lengths have reached a spatialextent nornlal to the surface of less than the lattice constant. The (GaAs),/(AIAs), ultrathin-layer superlattices exhibit novel optical properties due tothe indirect-gap nature ofthe constituent AlAs layers. The minority-carrier lifetimes can be tailored over four orders of magnitude by appropriately designing the superlattice configuration. This feature opens up new fieldsof application in lasers and in nonlinear photonic and optoelectronic devices. The narrow buried doping channel in delta-doped GaAslayers andin GaAs/AI,Gal-xAs structures leads to a significant improvement of the electrical properties. Based on this concept, non alloyed ohmic contacts,field-effect transistors with ;cry high transconductance, unpinned GaAs surfaces for MOS devices, and electron mobilities as high as 10' cm2v-'s-Ihave been fabricated.

References

Cho, A.Y. & Arthur, J.R., Progr. Solid State Chem., 10 (1975), 157.

Ploog, K., Angew. Chem. Int. Ed, Engl., 27 (1988), 593.

Sakaki, H., In Proc. Int. Symp. on Foundations of Quantum Mechanics, Tokyo, 1983, p. 94.

Capasso, F., Science, 235 (1987), 172.

Gossard, A.C., Treat. Muter. Sci. Technol., 24 (1F81), 13.

Joyce, B.A., Rep. Progr. Phys., 48 (1985), 1637.

Chang, L.L. & Ploog, K., (Eds.), Molecular Beam Epitaxy and Heterostructurcs, (Martinus Nijhoff, Dordrecht), 1985, NATO Advance Science Institute Series E 87.

Parker, E.H.C., (Ed.), The Technology and Physics of Molecular Beam Epitaxy, (Plenum Press, New York), 1985.

Sakamoto, T., Funabashi, H., Ohta, K.,Nakagawa, T., Kawai, N.J., Kojima, T. & Bando, K., Superlatt. Microstruct. , 1 (1985), 347.

Joyce, B.A., Dobson, P.J., Neave, J.H., Woodbridge, K, Zhang, J., Larsen, P.K. & BGlger, B., SurJ: Sci., 168 (1986), 423.

Suzuki, Y. & Okamoto, H., J. Appl. Phys., 58 (1985), 3456.

Tanaka, M., Sakaki, H. & Yoshino, J., Jpn. J. Appl. Phys., 25 (1986), L155.

Voillot, F., Madhukar, A., Kim, J.Y., Chen, P., Cho, N.M., Tang, W.C. & Newman, r P.G., Appl. Phys. Lett., 48 (1986), 1009.

Tapfer, L. & Ploog, K, Phys. Rev., B 33 (1986), 5565.

Meirav, U., Heiblum, M. & Stern, F., Appl. Phys. Lett., 52 (19881, 1248.

Lang, D.V., Logan, RA. & Jaros, M., Phys. Rev., B 19 (1979), 1015.

Schubert, E.F. & Ploog, K., Phys. Rev., B 30 (19841, 7021. kn E

Morgan, T.N., Phys. Rev., B 34 (1986), 2664.

Dingle, R., Logan, RA. & Arthur, J.R, Inst. Phys. Con$ Ser., 33a (1977), 210.

Camras, M.D., Holonyak, N., Hess, K., Coleman, J.J., Burnham, R.D. & Scifres, D-R., Appl. Phys. Lett., 41 (1982), 317. I

Fujiwara, K., Oppolzer, H. & Ploog, K., Inst. Phys. Con$ Ser., 74 (19851, 351. i,

h o g , K., Ohmori, Y., Okamoto, H., Stolz, W. & Wagncr, I., APPI. Phys. Lett.. 471 t '

i19851, 384.

Wagner, J., Stolz, W., ffiecht, J. & Ploog, K., Solid State Commun.. 57 (1986), 781. '

Fujiwara, K., De Miguel, J.L. & Ploog, K., Jpn. J. Appl. Phys., 24 (1989, L405.

- Deveaud, B., Chomette, A., Lambert, B., Regreny, A., Romestain, R. & Edel, P., Solid k State Commun., 57 (1986), 885.

Nakamura, A., Fujiwara, K., Tokuda, Y., Nakayama, T. & Hirai, M., Phys. Rev., B 34 (1986), 90 19.

Fujiwara, K., Nakamura, A., Tokuda, Y., Nakayama, T. & Hirai, M., Appl. Phys. Lett., 49 (1986), 1193.

Fujii, T., Hiyamizu, S., Yamakoshi, S. & Ishikawa, T., J. Vac. Sci. Technol., B 3 (1985), 776.

Ploog, K. & Fischer, A., Appl. Phys. Lett., 48 (1986), 1392.

Coleman, J.J., Dapkus, P.D., Laidig, W.D., Vojak, B.A. & Holonyak, N., Appl. Phys. Lett., 38 (1981), 63.

Tokuda, Y., Ohta, Y.N., Fujiwara, K. & Nakayama, T., J. Appl. Phys., 60 (1986), 2729.

Baba, T., Mizutani, T. & Ogawa, M., Jpn. J. Appl. Phys., 22-(1983), L627.

Blood, P., Fletcher, E.D. & Foxon, C.T., In Proceedings of the SPIE-International Society for Optical Engineering, Vol. 861 (SPIE, Bellingham), 1987, p. 61.

Hayakawa, T., Suyama, T., Takahashi, K, Kondo, M., Yamamoto, S. & Hijikata, T., Appl. Phys. Lett., 49 (1986), 636.

Nakayama, M., Kubota, K., Kato, H., Chika, S. & Sano, N., Solidstate Commun., 53 (1985), 493.

Isu, T., Jiang, D.S. & Ploog, K, Appl. Phys., A 43 (1987), 75.

Nagle, J., Garriga, M., Stolz, W,, Isu, T. & Ploog, K., J. Physique, 48 (1987), Colloque

C5-495.

Downloads

Published

2013-10-01

How to Cite

Plog, K., & Muralidharan, R. (2013). Custom-Designed HI-V Semiconductor Mimstmctures Wed to the Ultimate Physical Limit : U I ~ - L a y e r GaAs/AUs ~uperhtticesa nd Delta- (Monolayer) Doping in GaAs/Al,Ga,-As Structures. Defence Science Journal, 39(4), 367–386. https://doi.org/10.14429/dsj.39.4818

Issue

Section

General Papers