Strained InGaAs/InAiAS High Eledron Mobility Transistors

  • Pallab Bhattacharya University of Michigan, Ann Arbor, Michigan
Keywords: Microwave performance, Transistors


The direct current (dc) and microwave performance of InP-based In(x),Gal-Js/Zno~52Alo,48As strained high electron mobility transistcrs are described. Its design is based on theoretical and experimental studies incl'rlding iow- and high-field transport characterisation of heterostructures with different strains. Mobilities as high as 13,900; 74,000 snd 134,000 cm2/Vs are measured at 300,77. and 4.2 K in a heterostructure with the value ofxbeing 0.65. Shubnikov-de Haas measurements indicate that the change inthe effective mass with increasing In is not sigrfificant in n-HEMTs and isnot responsible for the enhancement in mobilities. We believe that the improvement results from reduced alloy scattering, reduced inter sub band scattering, and reduced impurity scattering, all of which result from ahigher conduction-band offset and increased carrier confinement in thetwo-dimensiona e ectron gas. The high field eiectron velocities have been measured in these samples using pulsed current-voltage and pulsed Hai:measurements. A monotonic increese in velocities is osbzmed both at 300and 77 K with an increase of In content in the channel. Velocities of1.55 x 10' and 1.87 x 10' cm/s are measured at 300 and 77 K, respectively,in a Ino.asGao3 ~ s N n o . sr~slAo m ~o ciulation-doped heterostructure In 1.4pm gate HEMTs, the maximuni intrinsic dc transconductor is 700 rnS/mmwhen x = 0.65. The highest values of fr and f,, are 45 GHz and 60 GHzrespectively. These figures clearly indicate their superiority over identical lattice-matched devices, primarily resulting from increased first sub-band confinement in the pseudomorphic quantum well channel. It is expected that by reducing gate lengths tc submicron dimensions and making some growth-reiated changes in heterostructure design, the best millimetre wavesolid-state low-noise amplifiers and oscillators can be realised.

Author Biography

Pallab Bhattacharya, University of Michigan, Ann Arbor, Michigan
Solid State Electronics Laboratory, Department ofEIectricaI Engineering & Computer Science University of Michigan, Ann, Arbor, Michigan 481 09-2122, USA


Dingle, R., StBrmer, H.L., Gossard, A.C. & Wiegmann, W., Applied Phys. Lett., 33 (1978), 665.

Stormer, H.L., Dingle, R., Gossard, A.C., Wiegmann, W. & Sturge, M.D., Solid State Commun., 29 (1 979), 705.

Solomon, P.M. & Morkoc, H., IEEE Trans. on Electron Devices, ED-31 (1984), 1015.

Mimura, T., Joshin, K, Hiyamizu, S., Hikosaka, K. & Abe, M., Japan J. Appl. Phys., 20 (1981), L598.

Delescluse, P., Laviron, M., Chaplart, J., Delagebeaudeuf, D. & Linh, N.T., Electron. Lett., 17 (1981), 342.

Lee, C.P., Lee, S.J., Hou, D., Miller, D.L., Anderson, RJ. & Sheng, N.H., Electron. Lett., 20 (1984), 217.

Kiehl, R.A., Feuer, M.D., Hendel, R.H., Hwang, J.C.M., Keramidas, V.G., Allyn, C.L. & Dingle, R., IEEE Electron Dev. Lett., EDL-4 (1983), 377.

Takakuwa, H., Kato, Y., Watanabe', S. & Mori, Y., Electron. Lett., 21 (1985), 125.

Chao, P.C., Palmateer, S.C., Smith, P.M., Mishra, U.K, Duh, K.H.G. & Hwang, J.C.M., IEEE Electron. Dev. Lett., EDL-6 (1985), 531.

Berenz, J., Nakano, IC, Hsu, T-I & Goel, J., Electron. Lett., 21 (1985), 1028.

Saunier, P., IEEE Electron. Dev. Lett., EDL-7 (1986), 503.

Christou, A., Varmazis, K. & Hatznn~ulos, Z., Appl. Phys. Lett., 50 (1987), 935.

Chi, J.Y., Holmstrom, R.P. & Salerno, J.P., IEEE Electron. Dev. Lett., EDL-5 (1954), 381.

Fischer, R., Drummond, T.J., Klem, J., Kopp, W., Henderson, T.S., Perrachione, D. & Morkoc, H., IEEE Trans. Electron. Devices, ED-31 (1984), 1028.

Lang, D.V., Logan, R.A. & Jaros, M., Phys. Rev., B19 (1979), 1015.

Seo, K.S., & Bhattacharya, P., ZEEE Trans. Electron Devices, ED-34 (1987), 2221.

Hong, W-P. & Bhattacharya, P., IEEE Electron. Dev. Lett., EDL-9 (1 988), 352.

Mishra, U.K., Brown, A.S., Rosenbaum, S.E., Hooper, C.E., Pierce, M.W., Delaney, M.J., Vaughn, S. & White, IC, IEEE Electron. Dev. Lett., EDL-9 (1988), 647.

Basu, P.K. & Nag, B.R., Appl. Phys. Lett., 43 (1983), 689.

Zipperian, T.E., & Drummond, T.J., Electron. Lett., 21 (1985), 823.

Ketterson, A., Moloney, M., Masselink, W.T., Peng, C.K, Klem, J., Fischer, R., KOPP, W. & Morkoc, H., IEEE Electron. Dev. Lett., EDLB (1985), 628.

Henderson, T., Klem, J., Peng, C.K., Gedymin, J.S., Kopp, W. & Morkoc, H., APP~. Phys. Lett., 48 (1986), 1080.

Morkoc, H., Henderson, T., Kopp, W. & Peng, C.K., Electron. Lett. 22 (1986), 578. 410 Pallab Bhattacharya

Nguyen, L.D., Schaff, W.J., Tasker, P.J., Lepore, A.N., Palmateer, L.F., Foisy, M.C. & Eastman, L.F., IEEE Trans. Electron. Devices, ED-35 (1988), 139.

Berger, P.R., Bhattacharya, P., Singh, J. & Bajaj, K.K., Appl. Phys. Lett., 53 (1988), 684.

Juang, F.Y., Bhattacharya, P., Singh, J. & Nashimoto, Y., Appl. Phys. Lett. 48 (19861, 290.

Pamulapati, J., Oh, J.E., Debbar, N., & Bhattacharya, P., J. Appl. Phys., to be published.

Jesser, W.A., & Van der Merwe, J.H., J. Appl. Phys., 63 (1988), 1928.

Hong, W-P., Ng, G.I., Bhattacharya, P.K., Pavlidis, D. &Willing, S., J. Appl. Phys., 64 (1988), 1946.

Fritz, I., Schirber, J., Jones, E., Drummond, T.J. & Osbourn, G., Inst. Phys. Con$ Ser., 83 (1986), 233.

Jaffe, M., Oh, J., Pamulapati, J., Bhattacharya, P. & Singh, J., Paper presented at the International Symposium on Gallium Arsenide and Related Compounds, Atlanta, 1988.

Ng, G.I., Weiss, M., Pavlidis, D., Tutt, M., Bhattacharya, P. & Chen, C. Y., Paper presented at the International Symposium on Gallium Arsenide and Related Compounds, Atlanta, 1988.

Ng. G.I., Hong, W-P., Pavlidis, D., Tutt, M., & Bhattacharya, P.K., IEEE Electron Dev. Lett., EDL-9 (1988), 439.

Peercy, P.S., Dodson, B.W., Tsao, J.Y., Jones, E.D., Myers, D.R., Zipperian, T.E., Dawson, L.R, Biefeld, R.M., Klem, J.F. & Hills, C.R., IEEEElectron. Dev. Lett., EDL- 9 (1988), 621.

How to Cite
Bhattacharya, P. (2013). Strained InGaAs/InAiAS High Eledron Mobility Transistors. Defence Science Journal, 39(4), 397-410.
General Papers