Electron Microscopy of Multi-walled Carbon Nanotubesfor Display Devices Application
Abstract
The opportunity of creating and tailoring unprecedented and beautifully symmetric 3-D structures haspropelled the science of carbon nanotubes to become one of the highly promising areas in the field ofnanotechnology. The unique properties of carbon nanotubes have promoted research in the fabrication ofdevices composed of carbon nanotubes and in other applications. Characterisation tools are crucial in the studyof these emerging materials to evaluate their full potential in applications and to comprehend their basicproperties. The aim of this study was electron microscopy characterisation of the carbon nanotubes synthesisedto fabricate display devices. Both thermal chemical vapour deposition (CVD) and plasma enhanced chemicalvapour deposition routes were used to synthesise patterned and aligned carbon nanotubes. Several batchesof CNTs were produced by varying the process parameters such as growth temperature, gas ratio, durationof growth, catalyst condition, etc. Characterisation of these CNTs have been done using scanning electronmicroscope, transmission electron microscope, high resolution transmission electron microscope, and electronenergy loss spectrum. Structure, uniformity, chemistry, diameter, length, number of walls of the multi-wallednanotubes were characterised using various electron microscopes, which finally lead to the production of thedisplay devices using CNTs.
Defence Science Journal, 2008, 58(5), pp.655-663, DOI:http://dx.doi.org/10.14429/dsj.58.1689
Where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India