Femtosecond Filaments for Standoff Detection of Explosives

  • Venugopal Rao Soma Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad - 500 046 http://orcid.org/0000-0001-5361-7256
  • Abdul Kalam Shaik Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad - 500 046
Keywords: Filament induced breakdown spectroscopy, Explosives, PCA, NE-LIBS, Standoff

Abstract

In this report, we present our results from various studies to qualitatively discriminate the common military explosives viz. RDX, TNT and HMX in their pure form at a distance of ~6.5 m in standoff mode using femtosecond (fs) filament induced breakdown spectroscopy technique (fs FIBS) together with principal component analysis. A ~30 cm length fs filament obtained by a two-lens configuration was used to interrogate those energetic molecules in the form of pressed pellets (150 mg each). The plasma emissions were collected by a Schmidt-Cassegrain telescope (SCT) from a distance of ~8 m away from the investigation zone. Additionally, a few significant results obtained from the LIBS-based investigations of nitroimidazoles with respect to the standoff distance (~2 m) are discussed. Furthermore, we have also summarised a few important results from our recent investigations of bulk energetic materials in various configurations (including those with fs filaments). The results obtained from various fs FIBS configurations corroborate that the filament generation and its properties, the size and f-number of collection optics influence signal strength in the FIBS technique. These results project the fs FIBS technique as a potential technique for investigations aimed at hazardous materials and harsh environments in the standoff mode.

References

Pellegrino, P. M.; Holthoff, E. L. & Farrell, M. E. Laser-based optical detection of explosives. CRC Press, 2015, 383 p.

Singh, S. Sensors - An effective approach for the detection of explosives. J. Hazard. Mater., 2007, 144(1), 15-28. https://doi.org/10.1016/j.jhazmat.2007.02.018.

Caygill, J. S.; Davis, F. & Higson, S. P. Current trends in explosive detection techniques. Talanta, 2012, 88, 14-29. https://doi.org/10.1016/j.talanta.2011.11.043.

Fountain, A.W.; Christesen, S.D.; Moon, R.P.; Guicheteau, J.A. & Emmons, E.D. Recent advances and remaining challenges for the spectroscopic detection of explosive threats. Appl. Spectrosc., 2014, 68(8), 795-811. https://doi.org/10.1366/14-07560.

Wallin, S.; Pettersson, A.; Östmark, H. & Hobro, A. Laser-based standoff detection of explosives: A critical review. Anal. Bioanal. Chem., 2009, 395(2), 259-274. https://doi.org/10.1007/s00216-009-2844-3.

Wen, P.; Amin, M.; Herzog, W.D. & Kunz, R.R. Key challenges and prospects for optical standoff trace detection of explosives. Trends Anal. Chem., 2018, 100, 136-144. https://doi.org/10.1016/j.trac.2017.12.014.

Kalam, S.A.; Rao, S. & Rao, S.V. Standoff LIBS for explosives detection-challenges and status. Laser Focus World, April, 2017), 24-28.

Li, J.; Liu, N.; Ding, J.; Zhou, S.; He, T. & Zhang, L. Piezoelectric effect-based detector for spectroscopic application. Optics Lasers Eng., 2019, 115, 141-148. https://doi.org/10.1016/j.optlaseng.2018.11.020.

Marcus, L.S.; Holthoff, E.L. & Pellegrino, P.M. Standoff photoacoustic spectroscopy of explosives. Appl. Spectrosc., 2017, 71(5), 833-838. https://doi.org/10.1177/0003702816654168.

Cui, Y.-T.; Ma, E.Y. & Shen, Z.-X. Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum., 2016, 87(6), 063711. https://doi.org/10.1063/1.4954156.

Zrimsek, A.B.; Bykov, S.V. & Asher, S. A. Deep ultraviolet standoff photoacoustic spectroscopy of trace explosives. Appl. Spectrosc., 2019, 73(6), 601-609. https://doi.org/10.1177/0003702818792289.

Baudelet, M. & Smith, B.W. The first years of laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2013, 28(5), 624-629. https://doi.org/10.1039/C3JA50027F.

Qing-Yu, L. & Yi-Xiang, D. Laser-induced breakdown spectroscopy: From experimental platform to field instrument. Chin. J. Anal. Chem., 2017, 45(9), 1405-1414. https://doi.org/10.1016/S1872-2040(17)61040-5.

Rao, S.V.; Kalam, S.A. & Bharathi, M.S.S. Photonics for explosives detection. Digital Encyclopedia of Applied Physics (2019), pp. 1-31

Moros, J. & Laserna, J. Laser-induced breakdown spectroscopy (LIBS) of organic compounds: A review. Appl. Spectrosc., 2019, 73(9), 963-1011.

DeLucia, F.; Samuels, A.C.; Harmon, R.S.; Walters, R.A.; McNesby, K.L.; LaPointe, A.; Winkel, R. & Miziolek, A.W. Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection. IEEE Sens. J., 2005, 5(4), 681-689. https://doi.org/10.1109/JSEN.2005.848151.

Lopez-Moreno, C.; Palanco, S.; Laserna, J.J.; DeLucia Jr, F.; Miziolek, A.W.; Rose, J.; Walters, R.A. & Whitehouse, A.I. Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J. Anal. At. Spectrom., 2006, 21(1), 55-60. https://doi.org/10.1039/B508055J.

Gundawar, M.K.; Junjuri, R. & Myakalwar, A.K. Standoff detection of explosives at 1 m using laser induced breakdown spectroscopy. Def. Sci. J., 2017, 67(6), 623-630. https://doi.org/10.14429/dsj.67.11498.

Sunku, S.; Gundawar, M. K.; Myakalwar, A. K.; Kiran, P. P.; Tewari, S. P. & Rao, S. V. Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX, Spectrochim. Acta, Part B, 2013, 79, 31-38. https://doi.org/10.1016/j.sab.2012.11.002.

Rao, E.N.; Mathi, P.; Kalam, S. A.; Sreedhar, S.; Singh, A. K.; Jagatap, B. & Rao, S. V. Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data. J. Anal. At. Spectrom., 2016, 31(3), 737-750. https://doi.org/10.1039/C5JA00445D.

Myakalwar, A. K.; Dingari, N. C.; Dasari, R. R.; Barman, I. & Gundawar, M. K. Non-gated laser induced breakdown spectroscopy provides a powerful segmentation tool on concomitant treatment of characteristic and continuum emission. PLoS one, 2014, 9(8), e103546. https://doi.org/10.1371/journal.pone.0103546.

Lucena, P.; Gaona, I.; Moros, J. & Laserna, J. Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B, 2013, 85, 71-77. https://doi.org/10.1016/j.sab.2013.04.003.

Gaona, I.; Serrano, J.; Moros, J. & Laserna, J.J. Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy. Anal. Chem., 2014, 86(10), 5045-5052. https://doi.org/10.1021/ac500694j.

Labutin, T.A.; Lednev, V.N.; Ilyin, A.A. & Popov, A.M. Femtosecond laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2016, 31(1), 90-118. https://doi.org/10.1039/C5JA00301F.

Harilal, S.S.; Yeak, J.; Brumfield, B.E.; Suter, J.D. & Phillips, M.C. Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas. J. Anal. At. Spectrom., 2016, 31(6), 1192-1197. https://doi.org/10.1039/C6JA00036C.

De Lucia, F.C.; Gottfried, J.L. & Miziolek, A.W. Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection. Opt. Express, 2009, 17(2), 419-425. https://doi.org/10.1364/OE.17.000419.

Rodriguez, M.; Bourayou, R.; Méjean, G.; Kasparian, J.; Yu, J.; Salmon, E.; Scholz, A.; Stecklum, B.; Eislöffel, J. & Laux, U. Kilometer-range nonlinear propagation of femtosecond laser pulses. Phys. Rev. E, 2004, 69(3), 036607. https://doi.org/10.1103/PhysRevE.69.036607.

Stelmaszczyk, K.; Rohwetter, P.; Méjean, G.; Yu, J.; Salmon, E.; Kasparian, J.; Ackermann, R.; Wolf, J.-P. & Wöste, L. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phy. Lett., 2004, 85(18), 3977-3979. https://doi.org/10.1063/1.1812843.

Xu, H.L. & Chin, S.L. Femtosecond laser filamentation for atmospheric sensing. Sens., 2011, 11(1), 32-53. https://doi.org/10.3390%2Fs110100032.

Baudelet, M., Richardson, M. & Sigman, M., Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials. In 2009 IEEE Conference on Technologies for Homeland Security, (IEEE, 2009), 472-476. https://doi.org/10.1109/THS.2009.5168075.

Laserna, J.; Reyes, R. F.; González, R.; Tobaria, L. & Lucena, P. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements. Opt. Express, 2009, 17(12), 10265-10276. https://doi.org/10.1364/OE.17.010265.

Jin, Z.; Zhang, J.; Xu, M.; Lu, X.; Li, Y.; Wang, Z.; Wei, Z.; Yuan, X. & Yu, W. Control of filamentation induced by femtosecond laser pulses propagating in air. Opt. Express, 2005, 13(25), 10424-10430. https://doi.org/10.1364/OPEX.13.010424.

Chin, S.; Hosseini, S.; Liu, W.; Luo, Q.; Théberge, F.; Aközbek, N.; Becker, A.; Kandidov, V.; Kosareva, O. & Schröder, H. The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges. Can. J. Phys., 2005, 83(9), 863-905. https://doi.org/10.1139/p05-048.

Fisher, M.; Siders, C.; Johnson, E.; Rusyak, O.; Brown, C. & Richardson, M. Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy. In Enabling Technologies and Design of Nonlethal Weapons, (International Society for Optics and Photonics, 2006), 621907. https://doi.org/10.1117/12.663824.

Chen, A.; Li, S.; Qi, H.; Jiang, Y.; Hu, Z.; Huang, X. & Jin, M. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse. Opt. Commun., 2017, 383, 144-147. https://doi.org/10.1016/j.optcom.2016.08.079.

Kalam, S.A.; Murthy, N.L.; Mathi, P.; Kommu, N.; Singh, A.K. & Rao, S.V. Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials. J. Anal. At. Spectrom., 2017, 32(8), 1535-1546.https://doi.org/10.1039/C7JA00136C.

NIST, Atomic spectra database. https://www.nist.gov/pml/atomic-spectra-database. (Accessed on 8/14/2019)

Gaydon, A. G. & Pearse, R. The identification of molecular spectra. Springer Netherlands, 1976. 407 p.

Shaik, A.K.; Epuru, N.R.; Syed, H.; Byram, C. & Soma, V.R. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt. Express, 2018, 26(7), 8069-8083. https://doi.org/10.1364/OE.26.008069.

Shaik, A.K. & Soma, V.R. Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode. Opt. Lett., 2018, 43(15), 3465-3468. https://doi.org/10.1364/OL.43.003465.

Shaik, A.K. & Soma, V.R. Standoff discrimination and trace detection of explosive molecules using femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles. OSA Continuum., 2019, 2(3), 554-562. https://doi.org/10.1364/OSAC.2.000554.

Shaik, A. K. & Soma, V. R. Standoff detection of RDX, TNT, and HMXusing femtosecond filament induced breakdown spectroscopy. In Light, Energy and the Environment 2018 (E2, FTS, HISE, SOLAR, SSL), OSA Technical Digest (Optical Society of America, 2018), paper JW4A.1. https://doi.org/10.1364/FTS.2018.JW4A.1.

Moore, D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instrum., 2004, 75(8), 2499-2512. https://doi.org/10.1063/1.1771493.

Hahn, D. W. & Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community. Appl. Spectrosc., 2010, 64(12), 335A-366A.https://doi.org/10.1366/000370210793561691.

Hahn, D. W. & Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc., 2012, 66(4), 347-419. https://doi.org/ 10.1366/11-06574.

De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M. & De Pascale, O. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal. Chem., 2013, 85(21), 10180-10187. https://doi.org/10.1021/ac4016165.

Sherbini, A. M. E. & Parigger, C. G. Nano-material size dependent laser-plasma thresholds. Spectrochim. Acta, Part B, 2016, 124, 79-81. https://doi.org/10.1016/j.sab.2016.08.015.

Koral, C.; Dell’Aglio, M.; Gaudiuso, R.; Alrifai, R.; Torelli, M. & De Giacomo, A. Nanoparticle-enhanced laser induced breakdown spectroscopy for the noninvasive analysis of transparent samples and gemstones. Talanta, 2018, 182, 253-258. https://doi.org/10.1016/j.talanta.2018.02.001.

Sanchez-Ake, C.; Garcia-Fernandez, T.; Benitez, J. L.; de la Mora, M. B. & Villagran-Muniz, M. Intensity enhancement of LIBS of glass by using Au thin films and nanoparticles. Spectrochim Acta B, 2018, 146, 77-83. https://doi.org/10.1016/j.sab.2018.05.007.

De Giacomo, A.; Koral, C.; Valenza, G.; Gaudiuso, R. & Dell’Aglio, M. Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level. Anal. Chem., 2016, 88(10), 5251-5257. https://doi.org/10.1021/acs.analchem.6b00324.

Kalam, S. A.; Murthy, N. L.; Krishna, J. R.; Srikanth, V. V. S. S. & Rao, S. V. Nanoparticle enhanced laser induced breakdown spectroscopy with femtosecond pulses. In 13th International Conference on Fiber Optics and Photonics. OSA Technical Digest (online) (Optical Society of America, 2016), Th3A.89. https://doi.org/10.1364/PHOTONICS.2016.Th3A.89.

De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M. & De Pascale, O. Nanoparticle enhanced laser induced breakdown spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission. Spectrochim. Acta, Part B, 2014, 98, 19-27. https://doi.org/10.1016/j.sab.2014.05.010.

Burger, M.; Skrodzki, P.J.; Finney, L.A.; Nees, J. & Jovanovi, I. Remote detection of uranium using self-focusing intense femtosecond laser pulses. Remote Sensing, 2020, 12, 1281.

Wang, Q.; Teng, G.; Li, C.; Zhao, Y. & Peng, Z. Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy. J. Hazard. Mater., 2019, 369, 423-429. https://doi.org/10.1016/j.jhazmat.2019.02.015.

Teng, G. E.; Wang, Q. Q.; Kong, J. L.; Dong, L. Q.; Cui, X. T.; Liu, W. W.; Wei, K. & Xiangli, W. T. Extending the spectral database of laser-induced breakdown spectroscopy with generative adversarial nets. Opt. Express, 2019, 27(5), 6958-6969. https://doi.org/10.1364/OE.27.006958.

Published
2020-07-13
How to Cite
Soma, V., & Shaik, A. (2020). Femtosecond Filaments for Standoff Detection of Explosives. Defence Science Journal, 70(4), 359-365. https://doi.org/10.14429/dsj.70.14962
Section
Armaments & Explosives