Minimum Wave Speed Solution of Fisher's Equation by the Method of Least Squares - A Note

Authors

  • K. N. Mehta Indian Institute of Technology Delhi, New Delhi

DOI:

https://doi.org/10.14429/dsj.39.4762

Keywords:

Neutron density, Reaction diffusion processes, One dimensional habitat

Abstract

The paper presents a simple solution of travelling-wave type (corresponding to the minimum speed c=2) of Fisher's equation. which can be readily adapted for modelling neutron density in nuclear reactors, reaction-diffusion processes'in propulsion systems and growth of new advantageous gene in one-dimensional habitat

Author Biography

K. N. Mehta, Indian Institute of Technology Delhi, New Delhi

Department of Mathematics, Indian Institute of Technology, New Delhi

References

Canosa, J., IBM J. Res. Develop., 17 (1973), 307-313.

Fisher, R.A., Ann. Eugen., 7 (1936), 355-369.

Gazdag, J. & Canosa, J., J. Appl. Prob., 11 (1974), 445-457.

Ablowitz, M.J. & Zeppetella, A., Bull. Math. Biology, 41 (1979), 835-840.

Abdelkader, M.A., J. Math. Anal. Appl., 85 (1982), 287-290.

Canosa, J., J. Math. Phys., 10 (1969), 1862-1868.

Fife, P.C., Bull. Amer. Math. Soc., 84 (1978), 693-726.

Jeffrey, A. & Kakutani, T., SIAM Rev., 14 (19721, 582-643.

Kolmogoroff, A., Petrovsky, I. & Piscounoff, N., Elude de 1' equation

de la diffusion avec croissance de la quantite de matiere et son application a un

problerne biologique, Bull-de I'univ. d9Etote a Moseou @er. Intern), A1 (1937),

-25

Downloads

Published

2013-04-01

How to Cite

Mehta, K. N. (2013). Minimum Wave Speed Solution of Fisher’s Equation by the Method of Least Squares - A Note. Defence Science Journal, 39(2), 179–181. https://doi.org/10.14429/dsj.39.4762

Issue

Section

General Papers