On the Prediction of Damping and Vibratory Behaviour of Free-Free Multilayered Conical Shells

  • Kamal N. Khatri Armament Research & Development Establishment, Pune
Keywords: Resonance frequencies, Multilayered conical shells, Torsional vibrations, Axisymmetric vibrationsx, Axisymmetric vibrations, Hamilton's vibrational principle, Galerkin's procedure, Viscoelastic layers, Geometric parameters, Thickness ratio parameter

Abstract

An analysis is presented for the prediction of resonance frequencies and the associated system loss factors for all families of modes of vibrations in free-free multilayered conical shells, which are frequently used in aircraft, missiles and other allied systems. Because of the spin of a high order, missiles and gun-launched shells are subjected to torsional vibrations (Axisymmetric). The governing equations of motion for the axisymmetric vibrations of a general multilayered conical shell have been derived using Hamilton's vibrational principle. The solution is obtained by utilising simple trignometric series modal assumptions in Galerkin's procedure. The Correspondence principle of linear viscoelasticity for harmonic motions is used for evaluating the damping effectiveness of shells with elastic and viscoelastic layers. The resonance frequencies and the associated system loss factors for three-, five-and seven-layered conical shells with free edges are evaluated and their variations with geometric parameters are investigated. An increase in the number of layers (N) increases maximum obtainable ( system loss factor) for most of the modes with proper selection of geometric parameters, but increasing N beyond 5 yields only marginal increase in (system loss factor). Uniformly high values of (system loss factor) are obtained for all modes of vibration for high values of thickness ratio parameter. For thick shells, more layers are advisable for relatively high values of (system loss factor) for all modes.

Author Biography

Kamal N. Khatri, Armament Research & Development Establishment, Pune
Armament Research & Development Establishment, Pune
Published
2013-01-01
How to Cite
Khatri, K. (2013). On the Prediction of Damping and Vibratory Behaviour of Free-Free Multilayered Conical Shells. Defence Science Journal, 46(2), 59-69. https://doi.org/10.14429/dsj.46.4050
Section
Aeronautical Systems