Theoretical & Experimental Studies on Vibration & Damping of Fibre-Reinforced Cantilever Laminates.

  • M. Ganapathi Institute of Armament Technology, Pune
  • B.P. Patel Institute of Armament Technology, Pune
  • K. Kemkar Institute of Armament Technology, Pune
Keywords: Elastic moduli, Cantilever laminates, Vibration and damping analyses, Shear deformation theory

Abstract

In this paper, vibration and damping analyses  of glass fibre-reinforced laminated composite cantilever beams and plates are studied using C1 finite element using shear deformation theory and alsothrough experiments. The formulation in the theoretical model includes in-plane and rotary inertiaterms. The governing equations for the complex eigenvalue problem based on complex elastic moduliare formulated. The solutions are obtained using QR algorithm. Parametric study is carried out tohighlight; the effects of lay-up and ply-angle of the laminates. A limited number of experimentalinvestigafions on cantilever laminates are conducted for obtaining the natural frequenciqs, dampingfactor and frequency responses. The comparison between the theoretical and the experimfntal resultsshows good agreement.

Author Biographies

M. Ganapathi, Institute of Armament Technology, Pune
Institute of Armament Technology, Pune
B.P. Patel, Institute of Armament Technology, Pune
Institute of Armament Technology, Pune
K. Kemkar, Institute of Armament Technology, Pune
Institute of Armament Technology, Pune

References

Nakra, B.C. Vibration control with viscoelastic .materials, Part I. Shock Vib. Dig., 1976, 8, 3-12.

Nakra, B.C. Vibration control with viscoelastic materials, part II. shock Vib. Dig., 1981, 13,17-20.

Nakra, B.C. , Vibration control with viscoelastic materials, part III. Shock Vib. Dig., 1984, 16, 17-22.

Rao, J.S. Dynamics of plates. Marcel Dekker, Narosa Publication,1998.

Yildiz,A & Stevens, K. Optimum thickness distribution of unconstrained viscoelastic damping Iayer treament for plates. J. Sound Vib.,1985, 103, 183-99.

Hajela, P. & Lin C. y .Optimal design for viscoelasticalty damped beam structures. App. Mech. Rev., 1991;44, S96.,S106.

Marcelin, J .-L.; Trompette, P .H. & Smati A.

Optimal constrained layer damping with partial

coverage. Finite Elem. Anal. Des., .1992, 12,273-80.

Mead, D.J. & Markus, S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib., 1969 110, 163-75.

Roy P .K. & Ganesan, N. Influence of constrained

stepped layer on the response of a beam, J. Sound

Vib., 1992,154, 187-90.

Moscr, K. & Lumassegger, J M. Incrasing thc damping of flexural vibration of laminated FPC structures by incorporation of soft intermediate plies with minimum reduction of stiffness.Composite Structure, 1988, 10,321-33.

He, S. & Rao, M.D. Prediction of loss factors of curved sandwich beams. J. Sound Vib., 1992,159,101-13.

Rikards, R. Finite element analysis of vibration of and damping of laminated composites.CompositeStructure, 1993, 24, 193-204.

Imaino, W. &1 Harrison, J. C. A comment on constrained layer damping structures with low viscoelastic modulus. J. Sound vib., 1991, 149,354-59.

Gibson, R. F. & Plunkett, R. Dynamic stiffness and damping of fibre-reinforced composite material. Shock Vib. Dig., 1977, 9, 9-17.

Gibson, R.F. Dynamic mechanical properties of advanced composite materials and structutes: A review of recent research. Shock Vib. Dig ., 1990, 22,3-12.

Alarn, N. & Asnani, N .T .Vibration and damping analysis of fibre-reinforced composite material plates. J. Compos. Mater., 1986, 20, 2-18.

Malhotra, S.K.; Ganesan, N. & Veluswami, M.A. Vibration and damping analysis of orthotropic triangular plates. J. Sound Vib., 1989, 130,379-86.

Koo, K.N. & Lee, I. Vibration and damping analysis of composite laminates using shear deformable finite element. AIM Journal., 1993, 31, 728-35.

Shiau, T.N.; Rao, J.S., Yu; Y.D. & Choi, S.T., Steady-state response and stability of rotating composite blades with frictional damping. ASME J: Eng. Gas Turbines Power, 1998,120,131.

Beakou, A. & Touratier, M. A rectangular finite element for analysing composite multilayered shallow shells in statics, vibration, and buckling. Int. J. Num. Method Eng., 1993, 36, 627-53.

Jones, R.M. Mechanics of Composite Materials New York, McGraw-Hill, 1976.

Lin, X.; Ni, R.G. & Adams, R.D. Prediction and measurement lof the vibrational damping parameters of carbon and glass fibre-reinforced plastics. J. Compos. Mater., 1984, 18, 132-52.

Mead, D.J. & Markus, S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib., 1969, 10, 163-75.

Published
2013-01-01
How to Cite
Ganapathi, M., Patel, B., & Kemkar, K. (2013). Theoretical & Experimental Studies on Vibration & Damping of Fibre-Reinforced Cantilever Laminates. Defence Science Journal, 50(3), 325-333. https://doi.org/10.14429/dsj.50.3740
Section
Materials Science & Metallurgy