Effect of Loading Rate on Creep Properties of HgCdTe Epitaxial Films

Keywords: Berkovich indenter, Creep, HgCdTe epitaxial films, Nanoindentation

Abstract

Nanoindentation creep studies were performed on Hg1-xCdxTe (x~0.29) epitaxial films using different loading rates of 0.5 mN.s-1, 1 mN.s-1, 2 mN.s-1 and 4 mN.s-1, keeping a constant peak load of 10 mN. A constant hold time of 20 sec at peak load was maintained for all experiments. The effect of loading rate on creep behaviour of material has been investigated. Creep displacement had shown increasing trend with increase of loading rates. Stress exponents were extracted using creep curve fitting with an empirical equation. A strong dependence of loading rate on stress exponent was observed. The value of stress exponent was found varying in the range 0.60-1.76, 0.96-2.23, 0.98-2,87 and 0.90-2.81 for loading rates 0.5 mN.s-1, 1 mN.s-1, 2 mN.s-1 and 4 mN.s-1, respectively. The change of stress exponent was attributed to change of creep mechanism. Hardness and elastic modulus were extracted from load-displacement curves and it was found that with the increase of the loading rate hardness increases, while elastic modulus remains constant. A correlation between variation of hardness and creep displacement has also been presented.

References

Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol., 2002, 43(3-5), 187–210.

doi: 10.1016/S1350-4495(02)00140-8

Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Reports Prog. Phys., 2005, 68(10), 2267–2336.

doi: 10.1088/0034-4885/68/10/R01

Manchanda, R.; Nokhwal, R.; Sharma, V.; Sharma, H.; Sharma, B.L. & Sitharaman, S. Liquid phase epitaxy growth process for mercury cadmium telluride. Crystal. 2016, 21(1), 33–35.

Nokhwal, R.; Srivastav, V.; Goyal, A.; Sharma, B.L.; Hashmi, S.A. & Sharma, R.K., Surface studies on HgCdTe using non-aqueous iodine-based polishing solution. J. Electron. Mater., 2017, 46(12), 6795–6803.

doi: 10.1007/s11664-017-5764-6

Oliver, W.C.; Pharr, G.M. & Oliver, P.G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 1992, 7(6), 1564–1583.

Siu, K.W. & Ngan, A.H.W. The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag., 2013, 93(5), 449–467.

doi: 10.1080/14786435.2012.722234

Shan, Z. & Sitaraman, S.K., Elastic-plastic characterization of thin films using nanoindentation technique. Thin Solid Films, 2003, 437(1-2), 176–181.

doi: 10.1016/S0040-6090(03)00663-1

Yang, P.F.; Jian, S.R.; Lai, Y.S.; Yang, C.S. & Chen, R.S. Morphological, structural, and mechanical characterizations of InGaN thin films deposited by MOCVD. J. Alloys Compd., 2008, 463(1-2), 533–538.

doi: 10.1016/j.jallcom.2007.09.140

Feng, G. & Ngan, A.H.W. Creep and strain burst in indium and aluminium during nanoindentation. Scr. Mater., 2001, 45(8), 971–976.

doi: 10.1016/S1359-6462(01)01120-4

Syed Asif, S.A. & Pethica, J.B. Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A: Phys. Condens. Matter, Struct. Defects Mech. Prop., 1997, 76(6), 1105–1118.

doi: 10.1080/01418619708214217

Ding, Z.Y.; Song, Y.X.; Ma, Y.; Huang, X.W. & Zhang, T.H. Nanoindentation investigation on the size-dependent creep behavior in a zr-cu-ag-al bulk metallic glass. Metals (Basel). 2019, 9(5), 1-11.

doi: 10.3390/met9050613

Wang, F. & Xu, K. An investigation of nanoindentation creep in polycrystalline Cu thin film. Mater. Lett., 2004, 58(1), 2345–2349.

doi: 10.1016/j.matlet.2004.02.043

Bhattacharya A.K. & Nrx D. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solid Struct. 1988, 24(12), 1287–1298.

Li, H. & Ngan, A.H.W. Size effects of nanoindentation creep. J. Mater. Res., 2004, 19(2), 513–522.

doi: 10.1557/jmr.2004.19.2.513

Balakrishna Bhat, T. Mechanisms and empirical equations for deformation and some principles of alloy design. Bull. Mater. Sci., 1984, 6(4), 677–687.

doi: 10.1007/BF02743995.

Chudoba, T. & Richter, F. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coatings Technol., 2001, 148(2-3), 191–198.

doi: 10.1016/S0257-8972(01)01340-8

Ngan, A.H.W. & Tang, B. Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res., 2002, 17(10), 2604–2610.

doi: 10.1557/JMR.2002.0377

Published
2020-10-08
How to Cite
Sharma, H., Prasad, R., Saxena, R., Gokhale, A., & Sharma, R. (2020). Effect of Loading Rate on Creep Properties of HgCdTe Epitaxial Films. Defence Science Journal, 70(5), 493-497. https://doi.org/10.14429/dsj.70.16347
Section
Electronics & Communication Systems