Deciphering the Puzzle of Hypobaric Hypoxia Proteomics Prophylaxis and Modelling Approach

Keywords: Hypoxia, High-altitude, Proteomics, Redox PTMs, HAPE model, Silymarin, Prophylaxis

Abstract

Hypoxia, particularly hypobaric hypoxia, is a multifaceted entity which includes certain molecular, patho-physiological and biochemical aspects. Any single aspect in itself cannot help us elucidate hypobaric hypoxia in its entirety. We observed three crucial lacunae within the existing literature. These include a lack of high-throughput investigations into redox PTMs, particularly NO-based PTMs; a prophylactic supplement with proven efficacy and safety which doesn’t involve medical supervision and is not contraindicated in hepatic, renal and cardiac insufficiencies; and a clinically validated rodent model of HAPE without any genetic/pharmacological manipulations. In the present study, we present an antagonistic interplay between nitrosylation and carbonylation which shows an additional NO-based network that is active in acclimatised individuals. Then we present a micronised aqueous suspension of silymarin which is efficacious at low doses in providing antioxidant, anti-inflammatory and hypoxia-adaptive vascular responses in addition to being a free radical quencher itself. Silymarin has an excellent safety and efficacy profile in humans. Finally, we create a SD rat model of HAPE which was used to reverse-translate a previously known HAPE marker in humans (SULT1A1) and elucidate the synergistic occurrence of HAPE and inflammation cascades. This is the first radiologically validated rodent HAPE model. In conclusion, we were able to elucidate the molecular, biochemical and patho-physiological aspects of hypobaric hypoxia which were left out by previous studies.

References

Ahmad, Y.; Shukla, D.; Garg, I.; Sharma, N.K.; Saxena, S.; Malhotra, V. and Bhargava, K. Identification of haptoglobin and apolipoprotein AI as biomarkers for high altitude pulmonary edema. Functional Integrative Genomics, 2011, 11(3), 407.

doi: 101007/s10142-011-0234-3

Ahmad, Y.; N.K. Sharma, I. Garg, M.F. Ahmad, M. Sharma, & K. Bhargava, An insight into the changes in human plasma proteome on adaptation to hypobaric hypoxia. PloS one, 2013. 8(7).

doi:10.1371/journal.pone.0067548

Ahmad, Y.; N.K. Sharma, M.F. Ahmad, M. Sharma, I. Garg, & K. Bhargava, Proteomic identification of novel differentiation plasma protein markers in hypobaric hypoxia-induced rat model. PloS one, 2014, 9(5), e98027. doi: 101371/journal.pone.0098027

Ahmad, Y.; N.K. Sharma, M.F. Ahmad, M. Sharma, I. Garg, M. Srivastava, & K. Bhargava, The proteome of hypobaric induced hypoxic lung: Insights from temporal proteomic profiling for biomarker discovery. Sci Rep, 2015, 5, 10681. doi: 101038/srep10681

Jain, S.; Y. Ahmad, & K. Bhargava, Salivary proteome patterns of individuals exposed to high altitude. Arch Oral Biol., 2018, 96, 104-112.

doi: 101016/j.archoralbio.2018.09.002

Ahmad, Y.; S. Mishra, A. Arya, S. Paul, M. Sharma, J. Prasad, & K. Bhargava, Revisiting cobalt chloride preconditioning to prevent hypobaric hypoxia-induced damage: identification of global proteomic alteration and key networks. Funct. Integr. Genomics, 2016, 16(3), 281-95. doi: 101007/s10142-016-0483-2

Paul, S.; A. Gangwar, K. Bhargava, & Y. Ahmad, STAT3-RXR-Nrf2 activates systemic redox and energy homeostasis upon steep decline in pO2 gradient. Redox biology, 2018, 14, 423-438.

doi:10.1016/j.redox.2017. doi: 10013

Luks, A.M.; P.S. Auerbach, L. Freer, C.K. Grissom, L.E. Keyes, S.E. McIntosh, G.W. Rodway, R.B. Schoene, K. Zafren, & P.H. Hackett, Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 Update. Wilderness Environ Med,, 2019, 30(4S), S3-S18.

doi: 101016/j.wem.2019.04.006

Dietz, T.E. and P.H. Hackett, High-Altitude Medicine, in Travel Medicine, J.S. Keystone, P.E. Kozarsky, B.A. Connor, H.D. Nothdurft, M. Mendelson, & K. Leder, Editors. 2019, Elsevier: London. p. 387-400.

doi: 101016/b978-0-323-54696-6.00042-2

Donegani, E.; D. Hillebrandt, J. Windsor, U. Gieseler, G. Rodway, V. Schoffl, & T. Kupper, Pre-existing cardiovascular conditions and high altitude travel. Consensus statement of the Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA MedCom) Travel Medicine and Infectious Disease. Travel Med Infect Dis,, 2014, 12(3), 237-52.

doi: 101016/j.tmaid.2014.02.004

Bhardwaj, A. and K. Misra, Allopathic Remedies. In Management of High Altitude Pathophysiology. 2018, Elsevier. p. 205-215. doi:10.1016/C2017-0-00844-3

Ignarro, L.J.; G.M. Buga, K.S. Wood, R.E. Byrns, & G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Nat. Aca. Sci., 1987, 84(24), 9265-9269.

doi: 101073/pnas.84.24.9265

Palmer, R.M.; A.G. Ferrige, & S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327(6122), 524-6. doi: 101038/327524a0

Beall, C.M.; D. Laskowski, K.P. Strohl, R. Soria, M. Villena, E. Vargas, A.M. Alarcon, C. Gonzales, & S.C. Erzurum, Pulmonary nitric oxide in mountain dwellers. Nature, 2001, 414(6862), 411-2. doi: 101038/35106641

Ghosh, S.; M. Kiyamu, P. Contreras, F. Leon-Velarde, A. Bigham, & T.D. Brutsaert, Exhaled nitric oxide in ethnically diverse high-altitude native populations: A comparative study. Am. J. Phys. Anthropol., 2019, 170(3), 451-458. doi: 101002/ajpa.23915

Busch, T.; P. Bartsch, D. Pappert, E. Grunig, W. Hildebrandt, H. Elser, K.J. Falke, & E.R. Swenson, Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am. J. Respir Crit. Care Med., 2001, 163(2), 368-73.

doi: 101164/ajrccm.163.2.2001134

Published
2020-10-08
How to Cite
Gangwar, A., Paul, S., Jain, S., Ahmad, Y., & Bhargava, K. (2020). Deciphering the Puzzle of Hypobaric Hypoxia Proteomics Prophylaxis and Modelling Approach. Defence Science Journal, 70(5), 542-548. https://doi.org/10.14429/dsj.70.16339
Section
Life Sciences

Most read articles by the same author(s)