Synthesis and Thermal Decomposition Kinetics of Epoxy Poly Glycidyl Nitrate as an Energetic Binder

  • Masoud Mohamadi Vala Imam Khomeini International University, Qazvin
  • Yadollah Bayat Malek Ashtar University of Technology, Tehran
  • Mohammad Bayat Imam Khomeini International University, Qazvin
Keywords: Epoxy poly glycidyl nitrate, End modified, Energetic binder, Energetic plasticizer, Thermal stability, AKTS

Abstract

An energetic binder epoxy poly glycidyl nitrate (e-PGN) with a molecular weight of about 1244 gr/mol was synthesised via end modified poly glycidyl nitrate (PGN) is presented in the paper. This structure was characterised by the number of epoxy groups, infrared spectroscopy, and nuclear magnetic resonance. The thermal degradation behavior of e-PGN was studied by thermo gravimetric analysis (TG) and differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates. The glass transition temperature (Tg) was measured to determine the compatibility of energetic plasticizer with the binder in the mixture of plasticizer/binder and compared with the results of e-PGN, and initial decomposition temperature in e-PGN was studied using the DSC method. The DSC results showed that the glass transition temperature of a mixture of 20 % Bu-NENA/e-PGN mixture (Tg = −56 °C) was lower than e-PGN (Tg = −37.78 °C) that shows the most compatible plasticizer is Bu-NENA. The activation energy of degradation e-PGN and e-PGN-20% Bu-NENA were calculated with DSC by the model-free methods and compared with the results of AKTS software in version 3.51(2013-07-10). The activation energy of exothermic decomposition of the e-PGN and e-PGN-20% Bu-NENA were calculated by the Kissinger, Flynn–Wall–Ozawa, Starink, and AAdvanced kinetics and technology solutions (Friedman) methods. Finally, the half-life prediction of the e-PGN and e-PGN-20% Bu-NENA were investigated.

References

Bunyan, P.; Cunliffe, A.V.; Davis, A. & Kirby, F.A. The degradation and stabilisation of solid rocket propellants. Polym. Degrad. Stab., 1993, 40(2), 239-250. https://doi.org/10.1016/0141-3910(93)90211-Z

Chaturvedi, S. & Dave, P.N. Solid propellants: AP/HTPB composite propellants. Arab. J. Chem., 2015. https://doi.org/10.1016/j.arabjc.2014.12.033

Huggett, C. Bartley, C.E. & Mills, M.M. Solid propellant rockets. Princeton University Press, United States of America, 2016. 176 p.

Kuo, K.K.Y. & Acharya, R. Applications of turbulent and multiphase combustion. Wiley, Canada, 2012. 600 p.

Reshmi, S.; Arunan, E. & Nair, C.R. Azide and alkyne terminated polybutadiene binders: Synthesis, cross-linking, and propellant studies. Ind. Eng. Chem. Res., 2014, 53(43), 16612-16620. https://doi.org/10.1021/ie502035u

Wingborg, N. Improving the mechanical properties of composite rocket propellants. Akademisk Avhandling, Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden, 2004. (PhD thesis).

Ang, H.G. & Pisharath, S. Energetic polymers: Binders and plasticizers for enhancing performance. Wiley-VCH, Germany, 2012. 234 p.

Perut, C.; Lacroix, G.; Orlandi, O. & Franson, C. New solid propellants developments at snpe materiaux energetiques. Int. J. Energ. Mater. Chem. Propul., 2009, 8(6), 515-530. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v8.i6.40

Willer, R.L. Binders for high-energy composition utilizing cis-, cis-1, 3, 5-tri (isocyanatomethyl) cyclohexane. US Patent 5240523, 31 August 1993.

Badgujar, D.M.; Talawar, M.B.; Zarko, V.E. & Mahulikar, P.P. New directions in the area of modern energetic polymers: An overview. Combust. Explos. Shock Waves., 2017, 53(4), 371-387. https://doi.org/10.1134/S0010508217040013

Hinshaw, C.J.; Wardle, R.B. & Highsmith, T.K. Propellant formulations based on dinitramide salts and energetic binders. US Patent 5741998, 21 April 1998.

Provatas, A. Energetic polymers and plasticisers for explosive formulations-A review of recent advances. Defense Science and Technology Organization Melbourne Australia, No. DSTO-TR-0966. April 2000.

Astuti, E.; Supranto, S.; Rochmadi, R.; Prasetya, A.; Ström, K. & Andersson, B. Determination of the temperature effect on glycerol nitration processes using the HYSYS predictions and the laboratory experiment. Indones. J. Chem., 2014, 14(1), 57-62. https://doi.org/10.22146/ijc.21268

Dong, Q.; Li, H.; Liu, X. & Huang, C. Thermal and rheological properties of PGN, PNIMMO and P (GN/NIMMO) synthesized via mesylate precursors. Propellants Explos. Pyrotech., 2018, 43(3), 294-299. https://doi.org/10.1002/prep.201700201

Bayat, Y.; Razghi, M.A.; Ghorbani, M.; Ghadiri, A.; Mossahebi, M.M. & Dehghani, H. Synthesis of Tri-Block Polycaprolactone-Poly Glycidylnitrate Polycaprolactone as Polyol Propellant Binder. J. Energ. Mater., 2015, 10(2), 25-34. https://www.sid.ir/en/journal/ViewPaper.aspx?id=480873

Leeming, W.B.H.; Marshall, E.J.; Bull, H.; Rodgers, M.J. & Paul, N.C. An investigation into polyGLYN cure stability. In Proceedings of the 27th In International Annual Conference of ICT, Karlsruhe, Germany, 1996, pp. 99/1–99/5.

Kim, J.S.; Cho, J.R.; Lee, K.D. & Kim, J.K. 2-nitratoethyl oxirane, poly (2-nitratoethyl oxirane) and preparation method thereof. US Patent 7288681, 30 October 2007.

Paraskos, A.J.; Dewey, M.A. & Edwards, W. One pot procedure for poly (glycidyl nitrate) end modification. US Patent 7714078, 11 May 2010.

Wei, W.; Shi-min, H.; De-liang, Z.; Jin-qiang, X.; Bing-kun, S.; Yan-lu, X. & Bo, W. Synthesis and Curing of Epoxy-terminated Poly( glycidyl nitrate). Chin. J. Energ. Mater., 2017, 25(1), 49-52. https://doi.org/10.11943/j.issn.1006-9941.2017.01.008

Abrishami, F.; Zohari, N. & Zeynali, V. Synthesis and kinetic study on the thermal degradation of triblock copolymer of polycaprolactone-poly (glycidyl nitrate)-polycaprolactone (PCL-PGN-PCL) as an energetic binder. Polym. Adv. Technol., 2019, 30(3), 640-647. https://doi.org/10.1002/pat.4500

Shee, S.K.; Reddy, S.T.; Athar, J.; Sikder, A.K.; Talawar, M.B.; Banerjee, S. & Khan, M.A.S. Probing the compatibility of energetic binder poly-glycidyl nitrate with energetic plasticizers: thermal, rheological and DFT studies. RSC Adv., 2015, 5(123), 101297-101308. https://doi.org/10.1039/c5ra16476a

Chen, J.K. & Brill, T.B. Thermal decomposition of energetic materials: Part 51. Kinetics of weight loss from nitrate ester polymers at low heating rates. Thermochim. Acta., 1991, 181, 71-77. https://doi.org/10.1016/0040-6031(91)80413-D

Chen, J.K. & Brill, T.B. Thermal decomposition of energetic materials 50. Kinetics and mechanism of nitrate ester polymers at high heating rates by SMATCH/FTIR spectroscopy. Combust Flame., 1991, 85(3-4), 479-488. https://doi.org/10.1016/0010-2180(91)90149-6

Gouranlou, F. & Kohsary, I. Synthesis and characterization of 1, 2, 4-butanetrioltrinitrate. Asian J. Chem., 2010 22(6), 4221-4228.

Rao, K.P; Sikder, A.K.; Kulkarni, M.A.; Bhalerao, M.M. & Gandhe, B.R. Studies on n-Butyl Nitroxyethylnitramine (n-BuNENA): Synthesis, Characterization and Propellant Evaluations. Propellants Explos. Pyrotech., 2004, 29(2), 93-98. https://doi.org/10.1002/prep.200400035.

Liu, J. Nitroglycerin. In Nitrate Esters Chemistry and Technology. Springer, Singapore, 2019. pp. 281-340. https://doi.org/10.1007%2F978-981-13-6647-5_6

Wang, Y.L.; Liu, W.X.; Wang, W.; Zhu, Y.; Li, B.D.; Chen, B.; Ding, F. & Ji, Y.P. Synthesis of insensitive nitrate plasticizers TMETN and PGDN by micro reaction technology. Chin. J. Explos. Propellants., 2018, 04, 359-368. https://doi.org/10.14077/j.issn.1007-7812.2018.04.007

Rezaei, M.; Shahidzadeh, M. Synthesis and Characterization of Poly(2,2-Bis(azidomethyl)-1,3-Propylene Adipateas as Energetic Binder. J. Energetic. Mater., 2016, 11, 47-57.

Xie, C.; Gan, Y.; Ben, C. & Li, C. Pyrolysis kinetics analysis on FRP rod of composite insulators by DSC. In 2016 IEEE International Conference on High Voltage Engineering and Application, pp. 1-4. IEEE, 2016. https://doi.org/10.1109/ICHVE.2016.7800647

Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C. & Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta., 2011, 520(1-2), 1-19. https://doi.org/10.1016/j.tca.2011.03.034

Guo, S.; Wan, W.; Chen, C. & Chen, W.H. Thermal decomposition kinetic evaluation and its thermal hazards prediction of AIBN. J. Therm. Anal. Calorim., 2013, 113(3), 1169-1176. https://doi.org/10.1007/s10973-013-2993-7

Jangid, S.K.; Singh, M.K., Solanki, V.J., Sinha, R.K. & Murthy, K.P.S. Studies on Sheet Explosive Formulation Based on Octahydro-1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocine and Hydroxyl Terminated Polybutadiene. Def. Sci. J., 2017, 67(6), 617-622. https://doi.org/10.14429/dsj.67.10533

Shi, X.; Wang, J.; Li, X.; An, C.; Wang, J. & Ji, W. Preparation and Properties of 1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocane-based Nanocomposites. Def. Sci. J., 2015, 65(2), 131-134. https://doi.org/10.14429/dsj.65.7843

Krishnan, K.; Viswanathan, G.; Kurian, A. & Ninan, K. Kinetics of decomposition of nitramine propellant by differential scanning calorimetry. Def. Sci .J., 1992, 42(3), 135-139. https://doi.org/10.14429/dsj.42.4371

Bayat, Y. & Chizari, M. Synthesis, Characterization and Stability of Triblock Copolymer Based on Tetrahydrofuran and Glycidylazide as Binder. Polymer Science Series B., 2018, 60(5), 621-628. https://doi.org/10.1007/s10973-017-6351-z.

Kizilca, M. & Copur, M. Thermal dehydration of colemanite: Kinetics and mechanism determined using the master plots method. Can. Metall. Q., 2017, 56(3), 259-271. https://doi.org/10.1080/00084433.2017.1349023

Starink, M.J. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica. Acta., 1996, 288(1-2), 97-104. https://doi.org/10.1016/S0040-6031(96)03053-5

Tompa, A.S. & Boswell, R.F. Thermal stability of a plastic bonded explosive. Thermochim. Acta., 2000, 35, 169-175. https://doi.org/10.1016/S0040-6031(00)00386-5

Maharrey, S.; Highley, A.; Weise-Smith, D. & Behrens, R. Thermal Decomposition Mechanisms in Poly-Glycidyl Nitrate (PGN) Prepolymer. Sandia National Lab (SNL-CA), Livermore, CA (United States), No. SAND2006-7332C. November 2006.

Published
2020-06-25
How to Cite
Vala, M., Bayat, Y., & Bayat, M. (2020). Synthesis and Thermal Decomposition Kinetics of Epoxy Poly Glycidyl Nitrate as an Energetic Binder. Defence Science Journal, 70(4), 461-468. https://doi.org/10.14429/dsj.70.15470
Section
Missile System