A Case based Online Trajectory Planning Method of Autonomous Unmanned Combat Aerial Vehicles with Weapon Release Constraints

  • Jiayu Tang Naval Aviation University, PR China
  • Xiangmin Li Naval Aviation University, PR China
  • Jinjin Dai Naval Aviation University, PR China
  • Ning Bo Naval Aviation University, PR China
Keywords: Unmanned combat air vehicle, UCAV, Trajectory planning, Receding horizon control, Threat environment


As a challenging and highly complex problem, the trajectory planning for unmanned combat aerial vehicle (UCAV) focuses on optimising flight trajectory under such constraints as kinematics and complicated battlefield environment. An online case-based trajectory planning strategy is proposed in this study to achieve rapid control variables solution of UCAV flight trajectory for the of delivery airborne guided bombs. Firstly, with an analysis of the ballistic model of airborne guided bombs, the trajectory planning model of UCAVs is established with launch acceptable region (LAR) as a terminal constraint. Secondly, a case-based planning strategy is presented, which involves four cases depending on the situation of UCAVs at the current moment. Finally, the feasibility and efficiency of the proposed planning strategy is validated by numerical simulations, and the results show that the presented strategy is suitable for UCAV performing airborne guided delivery missions in dynamic environments.


Liu, J.-J.; Wang, W.-P.; Li, X.-B.; Wang, T. & Wang, T.-Q. A motif-based mission planning method for UAV swarms considering dynamic reconfiguration. Def. Sci. J., 2018, 68(2), 159-166. https://doi.org/10.14429/dsj.68.11959

G Goerzen, C.; Kong, Z. & Mettler, B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst., 2010, 57, 65–100. https://doi.org/10.1007/s10846-009-9383-1

Wang, G.-G.; Guo, L.-H.; Duan, H.; Wang, H.-Q. Luo, L. & Shao M.-Z. A hybrid meta-heuristic DE/CS algorithm for UCAV three-dimension path planning. Sci. World J., 2012, 1–11. https://doi.org/10.1100/2012/583973

Wang, G.-G. Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Memet. Comp. 2016. https://doi.org/10.1007/s12293-016-0212-3

Xu, C.-F.; Duan, H.-B. & Liu, F. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp Sci. Technol., 2010, 14, 535–541. https://doi.org/10.1016/j.ast.2010.04.008

Wang, G.-G.; Guo, L.-H.; Duan, H.; Liu, L.; Wang, H.-Q. & Shao M.-Z. Path planning for uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm. Adv. Sci., Eng. Med., 2012, 4(6), 550–564. https://doi.org/10.1166/asem.2012.1223

Duan, H.-B.; Liu, S.-Q. & Wu, J. Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerosp Sci. Technol., 2009, 13(8), 442–449. https://doi.org/10.1016/j.ast.2009.07.002

Wang, G.-G.; Chu, H.-C. & Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp Sci. Technol., 2016, 49, 231-238. https://doi.org/10.1016/j.ast.2015.11.040

Betts, J.T. Survey of numerical methods for trajectory optimization. J. Guid Control Dyn., 1998, 21(2), 193-207.


Zhang, Y.; Chen, J. & Shen, L.-C. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control. Chi. J. Aeronaut., 2013, 26(4), 1038–1056. https://doi.org/10.1016/j.cja.2013.04.040

Zhu, W.-R. & Duan, H.-B. Chaotic predator-prey biogeography-based optimization approach for UCAV path planning. Aerosp Sci. Technol., 2014, 32, 153-161. https://doi.org/10.1016/j.ast.2013.11.003

Duan, H.-B. & Huang, L.-Z. Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning. Neurocomputing, 2014, 125, 166-171. https://doi.org/10.1016/j.neucom.2012.09.039

Curiac, D.I. & Volosencu, C. Path planning algorithm based on Arnold cat map for surveillance UAVs. Def. Sci. J., 2015, 65(6), 483-488. https://doi.org/10.14429/dsj.65.8483

Wilson, S.A.; Vultetich, I.J.; Fletcher, D.; Jokic, M.; Brett, M.; Boyd, C.; Williams, W. & Bryce, I. Guided weapon danger area & safety template generation-a new capability. In AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2008. https://doi.org/10.2514/6.2008-7123

Jiang, H. & Liang, Y.-Q. Online path planning of autonomous UAVs for bearing-only standoff multi-target following in threat environment. IEEE Access, 2018, 6, 22531-22544. https://doi.org/10.1109/ACCESS.2018.2824849

Storm Shadow UCAV performance. Available from: http://www.aerospaceweb.org/design/ucav/main.html.

Wang, G.-G.; Deb, S. & Cui, Z.-H. Monarch butterfly optimization. Neural Comput. Appl., 2019, 31(7), 1995-2014. https://doi.org/10.1007/s00521-015-1923-y

Wang, G.-G.; Deb, S. & Coelho, L.S. Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput., 2015, 12, 1-22. https://doi.org/10.1504/IJBIC. 2015.10004283

Wang, G.-G.; Deb, S.; Gao, X.-Z. & Coelho, L.S. A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int. J. Bio-Inspired Comput., 2016, 8(6), 394. https://doi.org/10.1504/IJBIC.2016.10002274

How to Cite
Tang, J., Li, X., Dai, J., & Bo, N. (2020). A Case based Online Trajectory Planning Method of Autonomous Unmanned Combat Aerial Vehicles with Weapon Release Constraints. Defence Science Journal, 70(4), 374-382. https://doi.org/10.14429/dsj.70.15040
Combat Engineering