Study on Friction Sensitivity of Passive and Active Binder based Composite Solid Propellants and Correlation with Burning Rate

  • Ehtasimul Hoque Advanced Centre for Energetic Materials, Nasik - 422 207
  • Chandra Shekhar Pant Advanced Centre for Energetic Materials, Nasik - 422 207
  • Sushanta Das Advanced Centre for Energetic Materials, Nasik - 422 207
Keywords: Friction sensitivity, Composite propellant, Nitramines, STANAG–4487



 Friction sensitivity of composite propellants and their ingredients is of significant interest to mitigate the risk associated with the accidental initiation while processing, handling, and transportation. In this work, attempts were made to examine the friction sensitivity of passive binder: Hydroxy Terminated Polybutadiene/Aluminium/Ammonium Perchlorate and active binder: (Polymer + Nitrate Esters)/Ammonium Perchlorate/Aluminium/Nitramine based composite propellants by using BAM Friction Apparatus. As per the recommendation of NATO standard STANAG–4487, the friction sensitivity was assessed by two methods: Limiting Frictional load and Frictional load for 50% probability of initiation (F50). The test results showed that the active binder based formulations were more vulnerable to frictional load as compared to the formulations with passive binders. Examination of a comprehensive set of propellant compositions revealed that the particle size distribution of Ammonium Perchlorate and burn rate catalysts were the most influential factors in dictating the friction sensitivity for HTPB/Al/AP composite propellants. For active binder/AP/Al/Nitramine composite propellants, the formulation with RDX was found more friction sensitive with a sensitivity value of 44 N as compared to its HMX analog (61 N). The correlation studies of friction sensitivity, burning rate, and thermal decomposition characteristics of HTPB/Al/AP composite propellants is described.

Author Biographies

Ehtasimul Hoque, Advanced Centre for Energetic Materials, Nasik - 422 207

Mr Ehtasimul Hoque has completed MSc (Chemistry) from IIT Bombay in 2016. His current areas of work include quality control and characterisation of high energetic materials. 

Chandra Shekhar Pant, Advanced Centre for Energetic Materials, Nasik - 422 207

Dr Chandra Shekhar Pant did his PhD in propellant chemistry from Defence Institute of Advanced Technology, Pune. He is associated with the area of processing, testing and evaluation of high energy materials. 

Sushanta Das, Advanced Centre for Energetic Materials, Nasik - 422 207

Mr Sushanta Das is MTech (Chemical Engineering) from IIT Bombay. He is associated with research and production of high energy materials. 


Mastrolia, E. J & Klager, K. Solid propellants based on polybutadiene binders. Advan. Chem. Ser., 1969, 88, 122–164.

Shekhar Pant, C.; Santosh, M. S. S. N. M.; Banerjee, S. & Khanna, P. K. Single step synthesis of nitro-functionalized hydroxyl-terminated polybutadiene. Propellants, Explos. Pyrotech., 2013, 38(6), 748–753.

Kubota, N. propellants and explosives. Wiley-VCH, Germany, 2007.

Agrawal, J.P. High energy materials: Propellants, explosives and pyrotechnics. Wiley-VCH, Germany, 2010.

Choudhari, M. K.; Dhar, S. S.; Shrotri, P. G & Singh, H. Effect of high energy materials on sensitivity of composite modified double base CMDB propellant system. Def. Sci. J., 1992, 42(4), 253–257.

Badgujar, D. M.; Talawar, M. B.; Asthana, S. N. & Mahulikar, P. P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater., 2008, 151(2–3), 289–305.

Gharia, J. S.; Sinha, R. K.; Tadas, V. V.; Prakash, V. & Phadke, V. K. Studies on physico-mechanical and explosive characteristics of RDX/HMX-based castable plastic-bonded explosives. Def. Sci. J., 1998, 48(1), 125–130.

Pape, R. & Napadensky, H. US ARADCOM Special Publication, User Report No. ARLCD-SP-60004. 1980.

Pepe, R. & Napadensky, H. US ARADCOX, User Report No. ARLDC-CR-78035, 1978.

Bailey, A.; Chapman, D.; William, M. R. & Wharton, R. The handling and processing of explosives. In Proceedings of the 18th International Pyrotechnics Seminar 1992, Colorado, 1992.

Sikder, A. K. & Sikder, N. A Review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater., 2004, 112(1–2), 1–15.

Narang, R.; Nayak, S. R.; Nair, U. R. &Gharia, J. S. Storage life or an Aluminised HE composition. Def. Sci. J., 1993, 43(3), 263–267.

Zeman, S. & Jungová, M. Sensitivity and performance of energetic materials. Propellants, Explos. Pyrotech., 2016, 41(3), 426–451.

Sikder, A. K.; Maddala, G.; Agrawal, J. P. & Singh, H. Important aspects of behaviour of organic energetic compounds: A review. J. Hazard. Mater., 2001, 84(1), 1–26.

Sanghavi, R. R.; Kamale, P. J.; Shaikh, M. A. R.; Chakraborthy, T. K.; Asthana, S. N. & Singh, A. Glycidyl azide polymer-based enhanced energy LOVA gun propellant. Def. Sci. J., 2014, 56(3), 407–416.

Jensen, A. V. Chemical rocket/propellant hazards solid rocket/propellant processing handling storage and transportation. 1972.

Le Roux, J.J.J.P.A. The dependence of friction sensitivity of primary explosives upon rubbing surface roughness. Propellants, Explos. Pyrotech., 1990, 15(6), 243–247.

Bazaki, H. & Kubota, N. Friction sensitivity mechanism of ammonium perchlorate composite propellants. Propellants, Explos. Pyrotech., 1991, 16(1), 43–47.

Lusby, C.A.; Ferguson, D.C.; Husband, D.M. Friction and impact sensitivity of formulations containing Glycidyl Azide polymer. Propellants, Explos. Pyrotech., 1995, 20(1), 27–31.

Jawalkar, S.N.; Mehilal; Ramesh, K.; Radhakrishnan, K. K. & Bhattacharya, B. Studies on the effect of plasticiser and addition of toluene diisocyanate at different temperatures in composite propellant formulations. J. Hazard. Mater., 2009, 164(2–3), 549–554.

Ghosh, K.; Behera, S.; Kumar, A.; Padale, B. G.; Deshpande, D.G.; Kumar, A. & Gupta, M. Studies on Aluminized, high burning rate, Butacene® based, composite propellants. Cent. Eur. J. Energ. Mater., 2014, 11(3), 323–334.

Pang, W.; Fan, X.; Zhao, F.; Xu, H.; Zhang, W.; Yu, H.; Li, Y.; Liu, F.; Xie, W. & Yan, N. Effects of Different metal fuels on the characteristics for HTPB-based fuel rich solid propellants. Propellants, Explos. Pyrotech., 2013, 38(6), 852–859.

Yang, Z.; Gong, F.; Ding, L.; Li, Y.; Yang, G. & Nie, F. Efficient sensitivity reducing and hygroscopicity preventing of ultra-fine ammonium perchlorate for high burning-rate propellants. Propellants, Explos. Pyrotech., 2017, 42(7), 809–815.

Memon, N. K.; McBain, A. W. & Son, S. F. Graphene Oxide/Ammonium perchlorate composite material for use in solid propellants. J. Propuls. Power., 2016, 32(3), 682–686.

Sang, B.; Li, Z. wei; Li, X. hong; Yu, L. gui; Zhang, Z. jun. Graphene-based flame retardants: A review. J. Mater. Sci., 2016, 51(18), 8271–8295.

Nandagopal, S.; Mehilal, M.; Tapaswi, M. A.; Jawalkar, S. N.; Radhakrishnan, K. K. & Bhattacharya, B. Effect of coating of ammonium perchlorate with fluorocarbon on ballistic and sensitivity properties of AP/A1/HTPB propellant. Propellants, Explos. Pyrotech., 2009, 34(6), 526–531.

Verma, S. & Ramakrishna, P. A. Investigations on activated charcoal, a burn-rate enhancer in composite solid propellant. J. Propuls. Power, 2013, 29(5),1214-1219.

STANAG-4487: Explosives, friction sensitivity tests.NATO Standardization Office, Brussels, Belgium 2002.

Warner, K. F.; Sandstrom, M.M.; Brown, G.W.; Remmers, D.L.; Phillips, J.J.; Shelley, T.J.; Reyes, J.A.; Hsu, P.C. & Reynolds, J.G. ABL and BAM friction analysis comparison. Propellants, Explos. Pyrotech., 2015, 40(4), 583–589.

EN 13631-3:2004 – Explosive for civil uses – High Explosives – Part 3: Determination of Sensitiveness to Friction of Explosives; 2004.

BAM friction apparatus. In UN Recommendation on Transport of Dangerous Goods, Manual of Test and Criteria; United Nations: New York, 2015; p 104.

Dixon, W.J. & Mood, A.M. A method for obtaining and analysing sensitivity data. J. Am. Stat. Assoc., 1959, 54(286), 528–534.

Wild, R. & von Collani, E. Modelling of explosives sensitivity part 2: The Weibull-Model. Econ. Qual. Control, 2002, 17(2), 195–220.

UN Recommendations on the Transport of Dangerous Goods. Manual of Tests and Criteria, Bruceton and Sample Comparison Methods, Appendix 2; 1999.

Alouaaniari, M.; Lefebvre, M. H.; Perneel, C. & Herrmann, M. Statistical assessment methods for the sensitivity of energetic materials. Propellants, Explos. Pyrotech., 2008, 33(1), 60–65.

STANAG-4674: Non-Intrusive methods for measuring the burning rate of solid rocket propellants. NATO Standardization Office, Brussels, Belgium, 2018.

Bowden, F. P. & Gurton, O. A. Initiation of solid explosives by impact and friction: The influence of grit. Proc. R. Soc. Lond. A. Math. Phys. Sci., 1949, 198(1054), 337–349.

Bowden, F. P. & Gurton, O. A. Initiation of explosions by grit particles. Nature, 1948, 162, 654–655.

Field, J. E.; Bourne, N. K.; Palmer, S. J. P.; Walley, S. M.; Sharma, J. & Beard, B. C. Hot-Spot ignition mechanisms for explosives and propellants [and Discussion]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1992, 339(1654), 269–283.

How to Cite
Hoque, E., Pant, C., & Das, S. (2020). Study on Friction Sensitivity of Passive and Active Binder based Composite Solid Propellants and Correlation with Burning Rate. Defence Science Journal, 70(2), 159-165.
Armaments & Explosives