Location Size and Orientation Effect of Semi elliptical Surface Crack on the Fracture of a Type 3 Composite Pressure Vessel using J integral Method

  • Muzaffer Çetin Space Technologies Research Institute, The Scientific and Technological Research Council of Turkey, Ankara - 06800, Turkey
  • Kemal Yaman Defense Industries Research and Development Institute, The Scientific and Technological Research Council of Turkey, Ankara - 06261, Turkey
Keywords: Autofrettage, Crack propagation, Failure modes, Filament wound, Fracture mechanics, Pressure vessel


In this study, structural design and analysis of a type-3 composite over wrapped pressure vessel used in a military satellite propulsion system is presented. The aim is to design a composite tank lighter than all metal fuel tanks having the same volume. Moreover, necessary design stages have been revealed for similar composite over wrapped pressure vessels. ANSYS® is used to perform the stress-strain analysis of both metal and composite parts, to determine the optimum winding angle, tank Autofrettage and fracture characteristic for the metal liner considering the crack morphology. Tsai-Hill, Tsai-Wu and Hashin theories have been implemented to investigate the various failure modes of the composite vessel. Location, size and orientation angle of semi-elliptical surface crack has a pronounced effect on fracture characteristic of the liner. In fracture investigation J-integral method is used. It is foreseen that even in the most critical crack, the crack will not propagate and there will be no burst in the tank for proposed loading conditions. Numerical results are good agreement with the experimental results.


Liu, P.F.; Chu, J.K.; Hou, S.J.; Xu, P. & Zheng, J.Y. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Ren. Sust. Ener. Rev., 2012, 16, 1817-1827. https://doi.org/10.1016/j.rser.2012.01.006

Madhavi, M.; Rao, K.V.J. & Rao, K.N. Design and analysis of filament wound composite pressure vessel with integrated-end domes. Def. Sci. J., 2009, 59(1), 73-81. https://doi.org/10.14429/dsj.59.1488

Kaikai, S.; Lixun, C.; Long C. & Chen, B.; A theoretical model of semi-elliptic surface crack growth. Chin., J. Aerona., 2014, 27(3), 730-734. https://doi.org/10.1016/j.cja.2014.04.012

Xu, P.; Zheng, J.Y. & Liu, P.F. Finite element analysis of burst pressure of composite hydrogen storage vessels. Mater. Desig. 2009, 30, 2295-2301. https://doi.org/10.1016/j.matdes.2009.03.006

Wang, J.; Jiang, W.; Li, Y.; Wang, Q. & Xu, Q. Numerical assessment of cyclic J-integral DJ for predicting fatigue crack growth rate. Eng. Frac. Mech., 2019, 205, 455-469. https://doi.org/10.1016/j.engfracmech.2018.11.031

Hu, J. & Chandrashekhara, K. Fracture analysis of hydrogen storage composite cylinders with liner crack accounting for autofrettage effect. Int. J. Hydrogen Energ., 2009, 34, 3425-335. https://doi.org/10.1016/j.ijhydene.2009.01.094

Zhu, X. J-integral resistance curve testing and evaluation. J. Zhejiang. Univ-Sci A (Appl. Phys. & Eng.), 2009, 10(11), 1541-1560. https://doi.org/10.1631/jzus.A0930004

Murtaza, U.T. & Hyder, M.J. The effect of thermal stress on the elliptical surface cracks in PWR reactor pressure vessel. Theor. Appl. Fract. Mech., 2015, 75, 124-136. https://doi.org/10.1016/j.tafmec.2014.12.001

Fakoor, M.; Ghoreishi, S.M.N. & Khansari, N.M. Investigation of composite coating effectiveness on stress intensity factors of cracked composite pressure vessels. J. Mech. Sci. Technol., 2016, 30(7), 3119-3126. https://doi.org/10.1007/s12206-016-0621-8

Park, J.S.; Hong, C.S.; Kim, C.G. & Kim, C.u. Analysis of filament wound composite structures considering the change of winding angles through the thickness direction.Compos. Struct., 2002, 55, 63-71.

Crabonari, R.C.; Munoz-Rojas, P.A.; Andrade, E.Q.; Paulino, G.H.; Nishimoto, K. & Silva, E.C.N. Design of pressure vessels using shape optimization: An integrated approach. Int. J. Pres. Ves. Pip., 2011, 88, 198-212. https://doi.org/10.1016/j.ijpvp.2011.05.005

Zu, L.; Xu, H.; Wang, H.; zhang, B. & zi, B. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding. Compos. Str., 2019, 207, 41-52. https://doi.org/10.1016/j.compstruct.2018.09.007

Almeida Jr, J.H.S.; Faria, H.; Marques, A.T. & Amico, S.C. Load sharing ability of the liner in type III composite pressure vessels under internal pressure. J. Reinf. Plast. Comp. 2014, 33(24), 2274-2286. https://doi.org/10.1177/0731684414560221

Reddy, J.N. Mechanics of laminated composite plates and shells: Theory and analysis. Ed. 2nd. CRC Press LLC, Boca Raton, Florida, U.S.A, 2004.

Daniel, I.M. & Ishai, O. Engineering mechanics of composite materials. Oxford university Press, New York, U.S.A., 1994.

Paknahad, A.; Fathi, A.; Goudarzi & Nourani, A. M. Optimum head design of filament wound composite pressure vessels using a hybrid model of FE analysis and inertia weight PSO algorithm. Int. J. Mater. Form. 2014. https://doi.org/10.1007/s12289-014-1199-2

Hashin, Z. Failure criteria for unidirectional fibre composites. J. Appl. Mech-T. ASME, 1980, 47, 329-334.

Toray Carbon Fibers America Inc., http://www.toraycfa.com/pdfs/T800HDataSheet.pdf [Accessed on 16 November, 2016].

Onder, A.; Sayman, O.; Dogan, T. & Tarakcioglu, N. Burst failure load of composite pressure vessels. Compos. Struct., 2009, 89, 159-166. https://doi.org/10.1016/j.compstruct.2008.06.021

ANSYS Workbench Software Material Library, ANSYSY Inc. 2014.

European Cooperation for Space Standardization, ECSS-E-10-03A, Space Engineering: Testing, 15 February 2002.

Tam, W. H.; Jackson, A. C.; Nishida, E.; Kasai, Y. Design and manufacture of The ETS VIII Xenon Tank. AIAA2000-3677

The National Institute of Standards and Technology, Isothermal Properties for Xenon, http://webbook.nist.gov/chemistry/fluid/ [Accessed on 12 April, 2017].

zhu, Y.; zhang, Y.; zhao, X.; zhang, J. & Xu, X. Elastic-plastic buckling of externally pressurized hemispherical heads. Ships Offshore Str., 2019, 14(8), 829-838. https://doi.org/10.1080/17445302.2018.1564541

Han, M.G. & Chang, S.H. Failure analysis of a Type III hydrogen pressure vessel under impact loading induced by free fall. Compos. Str., 2015, 127, 288-297. https://doi.org/10.1016/j.compstruct.2015.03.027

Cho, S.M.; Kim, K.S.; Lee, K.M.; Lee, S.; Lee, Y.J. & Lyu, S.K. A study on cycling life and failure mode of Type3 cylinder treated with autofrettage pressure. Int. J. Precis. Eng. Man., 2016, 17(1), 1685-1691. https://doi.org/10.1007/s12541-016-0195-5

Maximator Test, LLC, White Paper-Autofrettage, http://www.maximator-test.com/about/White-Paper-Autofrettage.pdf, [Accessed on 8 May, 2014]

ASM Material Data Sheet, Aluminum 6061-T6, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6 [Accessed on 17 November, 2016]

Multhoff, J.B. Effective structural design procedure for composite hydrogen tanks. In 18th World Hydrogen Energy Conference, Essen, Germany, 2010.

Liao, B.B.; Wang, D.L.; Jia, L.Y.; zheng, J.Y. & Gu, C.H. Continuum damage modeling and progressive failure analysis of a Type III composite vessel by considering the effect of autofrettaga. J. Zhejiang. Univ-Sci A (Appl. Phys. & Eng.), 2019, 20(1), 36-49. https://doi.org/10.1631/jzus.A1800152

English, S.A.; Arakere, N.K. & Allen, P.A. J–Q characterized stress fields of surface-cracked metallic liners – II. Composite overwrapped pressure vessels. Eng. Frac. Mech., 2011, 78, 2097-2114. https://doi.org/10.1016/j.engfracmech.2011.02.023

How to Cite
ÇetinM., & YamanK. (2020). Location Size and Orientation Effect of Semi elliptical Surface Crack on the Fracture of a Type 3 Composite Pressure Vessel using J integral Method. Defence Science Journal, 70(1), 23-34. https://doi.org/10.14429/dsj.70.14578
Aeronautical Systems