Estimation of Compressional Wave Speed in Marine Sediments using Biot Stoll Model and Buckinghams Grain shearing Model

Keywords: Compressional speed, Geoacoustic modelling, Marine sediments


Acoustic properties of seafloor sediments can be estimated using theoretical models by giving geophysical properties of sediments as inputs to the respective models. Empirical relations connecting the geophysical and geoacoustic properties are available in literature. In this study an experimental assessment of two such theoretical models viz., Biot-Stoll model (BSM), a poro-elastic model and the Buckingham’s grain shearing (GS) model, a visco-elastic model is done by estimating the compressional wave speed. Compressional wave speed is measured using in-house developed sediment velocimeter and is compared with the speed estimated using both the models and a regression analysis was done. It was observed that the Coefficient of determination R2 for BSM and GS model are 0.769 and 0.729, respectively. It shows that once the constants used in GS model are evaluated for the Indian waters, then it can be used to estimate the acoustic properties of sediments.


Buckingham, M.J. Geoacoustic parameters of marine sediments: Theory and experiment. Technical report, Scripps Institution of Oceanography, Marine Physical Laboratory, 2009.

Hamilton, E.L. Geoacoustic modeling of the seafloor. J. Acoust. Soc. Am., 1980, 68(5), 1313-1340.

Holland, C.W. & Brunson, B.A. The Biot-Stoll sediment model: An experimental assessment. J. Acoust. Soc. Am., 1988, 84(4), 1437-1443.

Aleshin, V. & Guillon, L. Modeling of acoustic penetration into sandy sediments: Physical and geometrical aspects. J. Acoust. Soc. Am., 2009, 126(5), 2206-2214.

Buckingham, M.J. Compressional and shear wave properties of marine sediments: Comparisons between theory and data. J. Acoust. Soc. Am., 2005, 117(1), 137-152.

Courtney, R.C. & Mayer, L. Acoustic properties of fine-grained sediments from Emerald Basin: Toward an inversion for physical properties using the Biot-Stoll model. J. Acoust. Soc. Am., 1993, 93(6), 3193-3200.

Millero, F.J. & Poisson, A. International one-atmosphere equation of the state of sea water. Deep-Sea Res., Part A, 1981, 28(6), 625-629.

Hamilton, E.L. Prediction of in-situ acoustic and elastic properties of marine sediments. Geophysics, 1971a, 36(2), 266-284.

Sverdrup, H.U.; Johnson, M.W. & Fleming, R.H. The oceans: Their physics, chemistry and general biology, Prentice-Hall, Englewood Cliffs, NJ, 1970, 7:69.

Pradeep Kumar, T. Seasonal variation of relaxation time and attenuation in sediment at the sea bottom interface. Acust. Acta Acust., 1997, 83(3), 461-466.

Carman, P.C. Flow of gases through porous media. Academic Press, New York, 1956.

Hovem, J.M. The nonlinearity parameter of saturated marine sediments. J. Acoust. Soc. Am., 1979, 66(5), 1463-1467.

Rajan, S.D. Determination of geoacoustic parameters of the ocean bottom- Data requirements. J. Acoust. Soc. Am., 1992, 92(4), 2126-2140.

Domenico, S.N. Elastic properties of unconsolidated porous sand reservoirs. Geophysics, 1977, 42(7), 1339-1368.

Stoll, R.D. & Kan, T.K. Reflection of acoustic waves at a water-sediment interface. J. Acoust. Soc. Am., 1981, 70(1), 149-156.

Berryman, J.G. Long wavelength propagation in composite elastic media. I. Spherical Inclusions. J. Acoust. Soc. Am., 1980, 68(6), 1809-1819.

Hamilton, E.L. Elastic properties of marine sediments. J. Geophys. Res., 1971b, 76(2), 579-604.

Hamilton, E.L. Attenuation of shear waves in marine sediments. J. Acoust. Soc. Am., 1976, 60(2), 334-338.

Folk, R.L. & Ward, W.C. Brazos River bar: A study in significance of grain size parameters. J. Sediment. Petrol., 1957, 27(1), 3-26.

Wilson, W.D. Equation for the speed of sound in sea water. J. Acoust. Soc. Am., 1960, 32(10), 1357.

Harker, A.H.; Schofield, P.; Stimpson, B. P.; Taylor, R.G. & Temple, J.A.G. Ultrasonic propagation in slurries. Ultrasonics, 1991, 29(6), 427-438.

Sutton, G.H.; Berchemer, H. & Nafe, J.E. Physical analysis of deep-sea sediments. Geophysics, 1957, 22(4), 779-812.

Anderson, R.S. Statistical correlation of physical properties and sound velocity in sediments. In Physics of Sound in Marine Sediments, edited by Loyd Hampton, Springer, Boston, 1974.

Sanders, W.M. & Richardson, M.D. Parameter estimation errors in Buckingham’s Grain Shearing Model. Technical report, Naval Research Laboratory, Stennis Space Center, 2009, 1-8.

How to Cite
Anu, A., Nair, P. V., Uthaman, C., & Kumar, T. (2020). Estimation of Compressional Wave Speed in Marine Sediments using Biot Stoll Model and Buckinghams Grain shearing Model. Defence Science Journal, 70(3), 336-341.
Naval Systems