A Multi segment Morphing System for a Micro Air Vehicle using Shape Memory Alloy Actuators

  • Kamalakannan G.M. CSIR-National Aerospace Laboratories, Bengaluru - 560 017, India https://orcid.org/0000-0001-9110-2958
  • Giresh Kumar Singh CSIR-National Aerospace Laboratories, Bengaluru - 560 017, India
  • C.M. Ananda CSIR-National Aerospace Laboratories, Bengaluru - 560 017, India
Keywords: Multi-segmentmorphing, Adaptive control allocation, Leading edge drooping, Time-staggered control, Multiple shape memory alloy tracking control, Pulse frequency and pulse width control, Drooping angle control, Micro air vehicle, MAV


A configurable multi-segment morphing system for a micro air vehicle (MAV) is presented in this study. One of the novelties is the development of an adaptive control allocation algorithm that provides fast, simultaneous and independent operation of four morphing segments using shape memory alloy (SMA) actuators. The SMA operation is time-staggered in microsecond resolution to ensure that only one SMA draws power from the MAV battery at a time. The other novelties are the in-flight measurement of morphing angle using dual flex-sensors and morphing of leading edges such that the ‘morphing-line’ is diagonal (45º) to the MAV’s lateral axis. The system was implemented on an open source autopilot controller and operated using the MAV battery. It was ground-tested under propeller ON conditions and a droop rate of 35º/s and ability to track a 1 Hz sinusoidal variation of droop angle were realised.


Weisshaar, T.A. Morphing aircraft systems: Historical perspectives and future challenges. J. Aircr., 2012, 50(2), 337-353. https://doi.org/10.2514/1.C031456

Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I. & Inman, D.J. A review of morphing aircraft. J. Intell. Mater. Syst. Struct., 2011, 22(9), 823-877. https://doi.org/10.1177/1045389X11414084

Sofla, A.y.N.; Meguid, S.A.; Tan, K.T. & yeo, W.K. Shape morphing of aircraft wing: Status and challenges. Mater. Des., 2009, 31(3), 1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011

Bowman, J.; Sanders, B.; Cannon, B.; Kudva, J.; Joshi, S. & Weisshaar, T. Development of next generation morphing aircraft structures. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2007. https://doi.org/10.2514/6.2007-1730

Wlezien, R. W.; Homer, g. C.; Mcgowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J. & Simpson, J. O. The aircraft morphing program. In Proceedings of the 39th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit 1998. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980053567.pdf (Accessed on 15 July 2019).

Petricca, L.; Ohlckers, P. & grinde, C. Micro- and nano-air vehicles: State of the art. Int. J. Aerosp. Eng., 2011(Apr.), 1-17. https://doi.org/10.1155/2011/214549

Valasek, J. Morphing aerospace vehicles and structures. John Wiley & Sons, 2012. 46-48, 53 p. ISBN: 978-0-470-97286-1

Kudva, J.N. Overview of the DARPA smart wing project. J. Intell. Mater. Syst. Str., 2004, 15(4), 261-267. https://doi.org/10.1177/1045389X04042796

Jayasankar S.; Kumar, P. Senthil; Varughese, B.; Ramanaiah, B.; Vishwanath, S.; Ramachandra, H.V. & Dayananda, G. N. Smart aerodynamic surface for a typical military aircraft using shape memory elements. J. Aircraft, 2011, 48(6), 1968-1977. https://doi.org/10.2514/1.C031391

Abdullah, E.J.; Bil, C. & Watkins, S. Application of smart materials for adaptive airfoil control. AIAA 2009-1359, 2009. https://doi.org/10.2514/6.2009-1359

Popov, A.V.; grigorie, T.L.; Botez, R.M.; Mébarki, y. & Mamou, M. Modeling and testing of a morphing wing in open-loop architecture. J. Aircraft, 2010, 47(3), 917-923. https://doi.org/10.2514/1.46480

Smith, K.; Butt, J.; Von Spakovsky, M.R. & Moorhouse, D. A study of the benefits of using morphing wing technology in fighter aircraft systems. In the Proceedings of 39th AIAA Thermophysics Conference 2007: https://doi.org/10.2514/6.2007-4616

Bozlar, Michael; Punckt, Christian; Korkut, Sibel; Zhu, Jian; Foo, Choon Chiang; Suo, Zhigang & Aksay, Ilhan A. Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett., 2012, 101(9), 91907. https://doi.org/10.1063/1.4748114

Sahu, R.K.; Saini, A.; Ahmad, D.; Patra, K. & Szpunar, J. Estimation and validation of maxwell stress of planar dielectric elastomer actuators. J. Mech. Sci. Technol.,2016, 30(1), 429-436. https://doi.org/10.1007/s12206-015-1247-y

Liu, y.; Lv, H.; Lan, X.; Leng, J. & Du, S. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol., 2008, 69, 2064-2068. https://doi.org/10.1016/j.compscitech.2008.08.016

Guglieri g. & Sartori, D. Experimental characterization of actuators for micro air vehicles. Int. J. Micro Air Veh.,2011, 3(2), 49-59. https://doi.org/10.1260/1756-8293.3.2.49

Huang, W. On the selection of shape memory alloys for actuators. Mat. Des., 2002, 23(1) 11-19. https://doi.org/10.1016/S0261-3069(01)00039-5

Mohd Jani, J.; Leary, M. & Subic, A. Designing shape memory alloy linear actuators: A review. J. Intell. Mat. Syst. Str., 2017, 28(13) 1699-1718. https://doi.org/10.1177/1045389X16679296

Ma, N.; Song, g. & Lee, H. J. Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart Mat. Str., 2004, 13(4), 777-783. https://doi.org/10.1088/0964-1726/13/4/015

Asua, E.; Feutchwanger, J.; garcia-Arribas, J. & Etxebarria, V. Sensorless control of SMA-based actuators using neural networks. J. Intell. Mat. Syst. Str., 2010, 21(18), 1809-1818. https://doi.org/10.1177/1045389X10388965

Rediniotis, O.K.; Wilson, L.N.; Lagoudas, D.C. & Khan, M.M. Development of a shape-memory-alloy actuated biomimetic hydrofoil. J. Intell. Mat. Syst. Str., 2002, 13, 35-49. https://doi.org/10.1177/1045389X02013001534

Featherstone, R. & Teh, Y. H. Improving the speed of shape memory alloy actuators by faster electrical heating. In Experimental robotics IX, Springer, 2006, 67-76. https://doi.org/10.1007/11552246_7

Motzki, P.; Gorges, T.; Kappel, M.; Schmidt, M.; Rizzello, G. & Seelecke, S. High-speed and high-efficiency shape memory alloy actuation. Smart Mat. Str., 2018, 27(7) 075047, Jul. https://doi.org/10.1088/1361-665X/aac9e1

Kamalakannan, G.M.; gireesh Kumar Singh & Ananda, C.M. Versatile control of multiple morphing surfaces of micro air vehicle with reduced weight and optimized power consumption. In Third International Conference on circuits, control, communication and computing, 2018. https://doi.org/10.1109/CIMCA.2018.8739704

Saikrishna, C.N.; Ramaiah, K.V. & Bhaumik, S.K. Effects of thermo-mechanical cycling on the strain response of Ni-Ti-Cu shape memory alloy wire actuator. Mater. Sci. Eng. A, 2006, 428(1-2), 217-224. https://doi.org/10.1016/j.msea.2006.05.008

Kamalakannan, g.M.; gireesh Kumar Singh & Ananda, C.M. Influence of thermal insulation and wind velocity on the SMA actuator for morphing applications. J. Mech. Sci. Technol., 2019, 33(9), 4459-4468. https://doi.org/10.1007/s12206-019-0842-8

Monner, H.; Kintscher, M.; Lorkowski, T. & Storm, S. Design of a smart droop nose as leading edge high lift system for transportation aircrafts. In Proceedings of 50th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference 2009: https://doi.org/10.2514/6.2009-2128

Jayasankar, S.; Dayananda, g.N.; Varughese, B. & Senthil Kumar, P. SMA based adaptive concept on wings of large civil aircraft. In Symposium on Applied Aerodynamics and Design of Aerospace Vehicle (SAROD-2009), 2009. https://nal-ir.nal.res.in/9622/1/sarod2009_RTA_LE.pdf [Accessed on 15 July 2019]

How to Cite
G.M.K., SinghG., & AnandaC. (2020). A Multi segment Morphing System for a Micro Air Vehicle using Shape Memory Alloy Actuators. Defence Science Journal, 70(1), 3-9. https://doi.org/10.14429/dsj.70.14145
Aeronautical Systems