Simplified Motion Control of a Vehicle manipulator for the Coordinated Mobile Manipulation

  • Swati Mishra Indian Institute of Technology, Indore - 453 552, India
  • Santhakumar Mohan Indian Institute of Technology, Palakkad - 678 557, India
  • Santosh Kumar Vishvakarma Indian Institute of Technology, Indore - 453 552, India
Keywords: Vehicle-manipulator system, Kinematically redundant system, Resolved motion control, Operational space control


This paper considers a resolved kinematic motion control approach for controlling a spatial serial manipulator arm that is mounted on a vehicle base. The end-effector’s motion of the manipulator is controlled by a novel kinematic control scheme, and the performance is compared with the well-known operational-space control scheme. The proposed control scheme aims to track the given operational-space (end-effector) motion trajectory with the help of resolved configuration-space motion without using the Jacobian matrix inverse or pseudo inverse. The experimental testing results show that the suggested control scheme is as close to the conventional operational-space kinematic control scheme.


Tzafestas, S.G. Introduction to mobile robot control. Elsevier, 2014.

Chiaverini, S.; Oriolo, G; & Walker, I.D. Kinematically redundant manipulators. In Springer Handbook of Robotics, B. Siciliano and O. Khatib, 1st ed., Springer- berlin, Germany: Springer, 2008 pp. 245-268.

Atawnih, A; papageorgiou, D; & Doulgeri, D. Kinematic control of redundant robots with guaranteed joint limit avoidance. Rob. Auton. Sys., 2018, 99, 110-120.

Caccavale, F. & Siciliano, b. Kinematic control of redundant free-floating robotic systems. J. Adv. Robotics, 2012, 15(4), 429-448.

Siciliano, b. A closed-loop inverse kinematic scheme for on-line joint-based robot control. Robotica, 1990, 8(3), 231–243.

Galicki, M. Generalized Kinematic control of redundant manipulators in robot motion and control. Krzyszt of R. Kozlowski, 1st ed. Springer-Verlag london 2007, 19-226.

yao, X.y.; Ding, HF;&Ge,MF. Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dynamics,2018, 92(4), 1649–1664.

Hong, S.; lee, W.S.; Kang, y.S. & park, y.W. Kinematic control algorithms and robust controller design for rescue robot. 14th International Conference on Control Automation and Systems (ICCAS) Seoul, South Korea, Oct. 22-25,2014, pp. 637-642.

li, l.; Gruver, W.A.; Zhang, Q. & yang, Z. Kinematic Control of Redundant Robots and the Motion Optimizability Measure. IEEE Trans. Sys. Man and Cybernetics-Part B: Cybernetics, 2001, 31(1), 155-160.

Koga, M.; Kosuge, K.; Furuta, K. & Nosaki, K. Coordinated motion control of robot arms based on the virtual internal model. IEEE Trans. Robotics Automation, 1992, 8(1), 77-85.

Ahmad, S. & luo, S. Coordinated Motion Control of Multiple Robotic Devices for Welding and Redundancy Coordination through Constrained Optimization in Cartesian Space. IEEE Trans. Robotics Automation, 1989, 5(4), 409-417.

Walker, M.W.; Kim, D. & Dionise, J. Adaptive coordinated motion control of two manipulator Arms. In proc. IEEE International Conference on Robotics and Automation, Scottsdale, Arizoqa,1989 p. 1084-1090.

Zhou, S.; pradeep, y.C.; Zhu, M.; Semprun, K.A. & Chen, p. Motion control of a nonholonomic mobile manipulator in task space, Asian J. Control, 2017, 20(5), 1–10.

Chiaverini, S. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Rob. Automation, 1997, 13(3), 398-410.

Nakanishi, J.; Cory, R.; Mistry, M; peters, J. & Schaal, S. Comparative experiments on task space control with redundancy resolution. In IEEE/RSJ International Conference on Intelligent Robots and Systems; Edmonton, Alta., Canada, Aug. 2-6, 2005.

Sutton, R.S. & barto, A.G. Reinforcement learning: An introduction MIT press, 2nd ed., Cambridge, Massachusetts london, England, 1998, ch.1, p.1-11.

li, Z.; Zhao, T.; Chen, F.; Hu, F.; Su, C.y. & Fukuda T. Reinforcement learning of manipulation and grasping using dynamical movement primitives for a humanoid like mobile manipulator. IEEE/ASME Trans. Mech.,2017, 23(1), 121-131.

Althoefer, K.; Krekelberg, b.; Husmeier, D. & Seneviratne, l. Reinforcement learning in a rule-based navigator for robotic manipulators. Neurocomput. Elsevier Sci., 2001, 37, 51-70.

Gibollet, R.P. & Rives, P. Applying visual servoing techniques to control a mobile hand-eye system. In IEEE International Conference of Robotics and Automation, Nagoya, Japan, May 21-27, 1995, pp. 166-171.

Wang, Y.; lang, H. & de Silva, C.W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Trans. Mech., 2010, 15(5), 757 – 769.

Janabi-Sharifi, F.; Deng, L. & Wilson, W.L. Comparison of bASIC VISuAl SERVOING MEthods. IEEE/ASME Trans.Mech., 2011, 16(5), 967 – 983.

ben-Israel, A. & Greville T.N.E. Generalized Inverses: Theory and Applications, Springer New york, 2003.

Raja, R.; Dasgupta, b. & Dutta, A. Motion planning and redundancy resolution of a rover manipulator. In IEEE International WIE Conference on Electrical and Computer Engineering Dec. 19-20,2015, pp. 90-93.

Yang, C.; Paul, G.; Ward, P.; & liu, D. A path planning approach via task-objective pose selection with application to an inchworm-inspired climbing robot. In IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Alberta, Canada, July 12-15, 2016,pp. 401-406.

Nandi, S. & Singh, T. Chance constraint based design of open-loop controllers for linear uncertain systems. IEEE/ASME Trans. Mech., 2018, 23(4), 1952 – 1963.

liu, T.; lie, y.; Han, l.; Xu, W. & Zou, H. Coordinated resolved motion control of dual-arm manipulators with closed chain. Int. J. Adv. Robotic Sys., 2016, 13 (3), 1-14.

liao, J.; Huang, F.; Chen, Z. & yao, b. Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy. Int J Intell Robot Appl,2019,

How to Cite
Mishra, S., Mohan, S., & Vishvakarma, S. (2020). Simplified Motion Control of a Vehicle manipulator for the Coordinated Mobile Manipulation. Defence Science Journal, 70(1), 72-81.
Electronics & Communication Systems