Standoff Detection and Identification of Explosives and Hazardous Chemicals in Simulated Real Field Scenario using Time Gated Raman Spectroscopy
Abstract
The detection of hazardous chemicals, explosives, improvised explosive materials, energetic materials and their associated compounds for security screening, forensic applications and detection of unexploded ordnance is an active area of research. The results based on comprehensive experimental study and performance of time gated Raman spectroscopy (TGRS) for stand-off detection of explosives and hazardous chemicals under realistic scenario are presented. Representative results drawn from the experimental study for detection of explosives and hazardous chemicals in simulated real field scenario are given.
References
S. Botti; S. Almaviva; L. Cantarini; A. Palucci; A. Puiu & A. Rufoloni. Trace level detection and identification of nitro-based explosives by surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 463-468.
doi:10.1002/jrs.4203
Jimmie Oxley; James Smith; Joseph Beady; Faina Dubnikova; Ronnie Kosloff; Leila Zeiri & Yehuda Zeiri. Raman and infrared fingerprint spectroscopy of peroxide -based explosives. Applied Spectroscopy, 2008, 62 (8), 906-915.
Sanjay Gulia; Kamal K. Gulati; Vijayeta Gambhir; Rinku Sharma & M. N. Reddy. Trace detection of explosives and their derivatives in stand-off mode using time gated Raman Spectroscopy. Vibrational Spectroscopy, 2016, 87, 207-214.
doi: 10.1016/j.vibspec.2016.10.009
Robert Chirico; Salvatore Almaviva; Francesco Colao; Luca Fiorani Nuvoli; Wenka Schweikert; Frank Schnurer; Luigi Cassioli; Silvana Grossi; Daniele Murra; Ivano Menicucci; Federico Angelini & Antonia Palucci. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications. Sensors, 2016, 16(1), 8.
doi: 10.3390/s16010008
Kamal Kumar Gulati; Vijayeta Gambhir & M.N.Reddy. Detection of Nitro-aromatic compounds in soil and sand using time gated Raman spectroscopy. Defence Science Journal, 2017, 67(5), 588-591.
doi: 10.14429/dsj.67.10290
V. K. Khanna. Nanoparticle- based Sensors. Defence Science Journal, September 2008, 58(5), 608-616.
David D. Tuschel; Aleksandar V. Mikhonin; Brian E. Lemoff & Sanford A. Asher. Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection. Applied Spectroscopy, 2010, 64 (4), 425-432.
Leonardo C. Pacheco-Londono; William Ortiz-Rivera; Oliva M. Primera-Pedrozo & Samuel P. Hernandez- Rivera. Vibrational spectroscopy standoff detection of explosives. Analytical and Bioanalytical Chemisty, 2009, 395, 323-335.
doi: 10.1007/s00216-009-2954-y
Cristina Lopez-Moreno; Santigo Palanco; J. Javier Laserna; Frank DeLucia Jr; Andrzej W. Miziolek; Jeremy Rose; Roy A. Walters & Andrew I. Whitehouse. Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosives residues on solid surfaces. Journal of Analytical Atomic Spectroscopy, 2006, 21, 55-60.
doi: 10.1039/B508055J
Balakishore Yellampalle; William McCormick; Hai-Shan Wu; Mikhail Sluch; Robert Martin; Robert Ice & Brian E. Lemoff. High sensitivity explosives detection using dual-excitation wavelength resonance-raman detector. Proc. SPIE 9073, Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) Sensing XV, 90730H (29 May 2014).
doi: 10.1117/12.2050441
Manash Ghosh; Luling Wang & Sanford A. Asher. Deep Ultraviolet resonance Raman excitation profiles of NH4NO3, PETN, TNT, HMX, and RDX. Applied Spectroscopy, 2012, 66 (9), 1013-1021.
doi: 10.1366/12-06626
J. Moros; J.A.Lorenzo & J.J Laserna. Standoff detection of explosives; critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion. Analytical and Bioanalytical Chemistry. July 2011, 400(10), 3353-3365.
doi: 10.1007/s00216-011-4999-y
Likka Nissinen; Jan Nissinen; Pekka Keranen & Juha Kotamovaara. On the effects of the time gate position and width on the signal-to-noise ratio for detection of Raman spectrum in a time gated CMOS single-photon avalanche diode based sensor. Sensors and Actuators B: Chemical, 2017, 241, 1145-1152.
doi: 10.1016/j.snb.2016.10.021
Shiv k. Sharma; Paul G. Lucey; Manash Ghosh; Hugh W. Hubble & Keith A. Horton. Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochimica Acta part A, 2003, 59, 2391-2407.
doi: 10.1016/S1386-1425(03)00080-5
C. Weyermann; Y. Mimoune; F. Anglada; G. Massonnet; P. Esseiva & P. Buzzini. Applications of a transportable Raman spectrometer for in situ detection of controlled substance at border controls. Forensic Science International, 2011,209, 21-28.
doi: 10.1016/j.forsciint.2010.11.027
Y. Fleger; L. Nagli; M. Gaft & M. Rosenbluh. Narrow gated Raman and luminescence of explosives. Journal of Luminescence, 2009, 129, 979-983.
doi:10.1016/j.jlumin.2009.04.008
L. Nagli; M. Gaft; Y. Fleger & M. Rosenbluch. Absolute Raman cross-section of some explosives: Trend to UV. Optical Materials, 2008, 30, 1747-1754.
doi:10.1016/j.optmat.2007.11.019
Haowen Li; D. Ahmasi Harris; Bingwei Xu; Paul J. Wrzesinski; Vadim V. Lozovoy & Marcos Dantus. Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering. Applied Optics, 2009, 48(4), B17-B22.
doi:10.1364/AO.48.000B17
Pedro M. Ferro-Mercado & Samuel P. Hernandez-Rivera. Highly sensitive filter paper substrate for SERS trace explosives detection. International Journal of Spectroscopy, 2012, pp.1-7, Article ID 716527.
doi:10.1155/2012/716527
C. L Leverette; S.A Jacobs; S. Shanmukh; S.B. Chaney; R. A. Dluhy & Y.P Zhao. Aligned Silver nanorod arrays as substrate for surface- enhanced Infrared absorption spectroscopy. Applied Spectroscopy, 2006, 60(8), 906-913.
doi:10.1366/000370206778062084
T. Wadayama; M. Oishi & A. Hatta. Surfaced enhanced Raman scattering of organic samples powders spread over vacuum-evaporated silver thin film. Applied surface science, 2006, 253, 2713-2717.
doi: 10.1016/j.apsusc.2006.05.045
X. M. Yang; D.A. Tryk; K. Hashimoto & A. Fujishima. Examination of the photoreaction of p- Nitrobenzoic acid electrochemically roughed silver using surface enhanced Raman Imaging (SERI)”, J. Phys. Chem. B. 1998,102(25), 4933-4943.
doi: 10.1021/jp9811880
Salvatore Almaviva; Antonio Palucci; Sabina Botti; Adriana Puiu & Alessandro Rufoloni. Validation of a miniaturized spectrometer for trace detection of explosives by surface –enhanced Raman spectroscopy. Challenges 2016,7(2) ,14.
doi: 10.3390/challe7020014
David D. Tuschel; Aleksandr V. Mikhonin; Brian E. Lemoff & Sanford A. Asher. Deep Ultraviolet resonance Raman excitation enables explosives detection. Applied Spectroscopy, 2010, 64(4), 425.
Balakishore Yellampalle; Mikhail Sluch; Sanford Asher &Brian Lemoff. Multiple excitation wavelength resonance Raman explosives detection. Proc. of SPIE,2011, 8018, 801819-1.
doi: 10.1117/12.887087
Where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India