Aerodynamic Parameters Estimation Using Radial Basis Function Neural Partial Differentiation Method
Keywords:
RBF Neural Network, EKF, k-means clustering, PDM, Aerodynamic parameter estimation
Abstract
Aerodynamic parameter estimation involves modelling of force and moment coefficients and computation of stability and control derivatives from recorded flight data. This problem is extensively studied in the past using classical approaches such as output error, filter error and equation error methods. An alternative approach to these model based methods is the machine learning such as artificial neural network. In this paper, radial basis function neural network (RBF NN) is used to model the lateral-directional force and moment coefficients. The RBF NN is trained using k-means clustering algorithm for finding the centers of radial basis function and extended Kalman filter for obtaining the weights in the output layer. Then, a new method is proposed to obtain the stability and control derivatives. The first order partial differentiation is performed analytically on the radial basis function neural network approximated output. The stability and control derivatives are computed at each training data point, thus reducing the post training time and computational efforts compared to hitherto delta method and its variants. The efficacy of the identified model and proposed neural derivative method is demonstrated using real time flight data of ATTAS aircraft. The results from the proposed approach compare well with those from the other.
Published
2018-04-16
How to Cite
Sanwale, J., & Singh, D. J. (2018). Aerodynamic Parameters Estimation Using Radial Basis Function Neural Partial Differentiation Method. Defence Science Journal, 68(3), 241-250. https://doi.org/10.14429/dsj.68.11843
Issue
Section
Aeronautical Systems
Copyright (c) 2018 Defence Science Journal
Where otherwise noted, the Articles on this site are licensed under Creative Commons License: CC Attribution-Noncommercial-No Derivative Works 2.5 India