Mathematical Modelling the Drying Kinetics of Beetroot Strips during Convective Drying at Different Temperatures

  • S. S. Manjunatha DRDO-Defence Food Research Laboratory, Mysore-570 011, India
  • P. S. Raju DRDO-Defence Food Research Laboratory, Mysore-570 011, India
Keywords: Beetroot strips, Beta vulgaris L., Convective drying, Drying models, Arrhenius equation, Effective moisture diffusivity, Activation energy

Abstract

The thin layer drying of beetroot strips was evaluated at drying temperatures from 60 °C to 90 °C using convective dryer at inlet air velocity of 1.0 m/s. The different drying models were tested to evaluate the drying characteristics of beetroot strips. The investigations showed that Page’s and modified Page’s equations were satisfactorily describing the drying behaviour of beetroot strips during convective drying with appreciable high correlation coefficient (0.9971<r<0.9990) with low error values. The effective moisture diffusivity was increased from 3.563 x 10-10 m2/s to 8.038 x 10-10 m2/s with increase in drying temperature. The temperature dependency of effective moisture diffusivity was described by Arrhenius equation and activation energy for moisture diffusivity was 30.08 KJ/mol. The drying kinetic coefficients were significantly (p<0.05) affected by drying air temperature. The exponents of models were decreased linearly with drying air temperature during drying of beetroot strips. The equilibrium moisture content was markedly affected by drying air temperature and it decreased linearly with drying air temperature. The results were very useful in standardisation and optimisation of drying process of beetroot strips in large scale commercial production.

Author Biographies

S. S. Manjunatha, DRDO-Defence Food Research Laboratory, Mysore-570 011, India

Mr S.S. Manjunatha obtained MSc (Physics) from Mysore University, and presently working as Scientist D in DRDO-Defence Food Research Laboratory, Mysore. He has developed various quick cooking dehydrated vegetable curry mixes, spray dried fruit juice mixes, He is working in the areas of food engineering, processing engineering, Food texture and Food rheology. He also was working on mathematical modelling of food processes.

P. S. Raju, DRDO-Defence Food Research Laboratory, Mysore-570 011, India

Dr P.S. Raju obtained his in PhD in Botany. Presently working as Fellow in DRDO-Defence Food Research Laboratory, Mysore

References

Ertekin, C. & Yaldiz, O. Drying of egg plant and selection of a suitable thin layer drying model. J. Food Eng., 2004, 63, 349-359.

doi: 10.1016/j.jfoodeng.2003.08.007

Mcminn, W.A.M. Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng., 2006, 72, 113-123.

doi: 10.1016/j.jfoodeng.2004.11.025

Parti, M. A theoretical model for thin-layer grain drying. Drying Technol., 1990, 8, 101-122.

doi: 10.1080/07373939008959866

Babalis, S.J.; Papanicolaou, E.; Kyriakis, N. & Belessiotis, V.G. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). J. Food Eng., 2006, 75, 205-214.

doi: 10.1016/j.jfoodeng.2005.04.008

Xia, B. & Sun, D.W. Application of computational fluid dynamics (CFD) in the food industry: a review. Computer Electron. Agri., 2002, 34, 5-24.

doi: 10.1016/S0168-1699(01)00177-6

Kardum, J.P.; Sander, A. & Skansi, D. Camparision of convective, vacuum and microwave drying chlorpropamide. Drying Technol., 2001, 15, 2421-2440.

doi: 10.1081/DRT-100001359

Gunhan, T., Demir, V., Hancioglu, E. and Hepbasli, A. 2005. Mathematical modelling of drying of bay leaves. Ener. Conver. Managem. 2001, 46(11-12), 1667-1679.

doi: 10.1016/j.enconman.2004.10.001

Pedreno, M.A. & Escribano, J. Correlation between antiradical activity and stability of betalanine from Beta vulgaris L. roots under different pH, temperature and light conditions. J. Sci. Food Agri., 2001, 81, 627-631.

doi: 10.1002/jsfa.851

Vali, L.; Stefanovits-Banyai, E.; Szentmihalyi, K.; Febel, H.; Sardi, E.; Lugasi, A.; Kocsis, I. & Blazovics, A. 2007. Liver-protecting effects of table beet (Beta vulgaris var, Rubra) during ischemia-reperfusion. Nutri. 2007, 23, 172-178.

doi: 10.1016/j.nut.2006.11.004

Jastrebova, K.; Witthoft, C.; Grahn, A.; Svensson, U. & Jagerstad, M. HPLC determination of folates in raw and processed beetroots. Food Chem., 2003. 80, 579-588.

doi: 10.1016/S0308-8146(02)00506-X

Stintzing, F.C. & Carle, R. Betalains-emerging prospects for food scientists. Trends Food Sci. Technol., 2007, 18, 514-525.

doi: 10.1016/j.tifs.2007.04.012

Roy, K.; Gullapalli, S.; Chaudhuri, U.R. & Chakraborty, R. The use of a natural colorant based on betalain in the manufacture of sweet products in India. Int. J. Food Sci. Technol., 2004, 39, 1087-1091.

doi: 10.1111/j.1365-2621.2004.00879.x

Koul, V.K.; Iain, M.P.; Koul, S.; Sharma, V.K.; Tikoo, C.L. & Jain, S.M. Spray drying of beetroot juice using different carriers. Ind. J. Chem. Technol., 2002, 9, 442-445.

Mwithiga, G. & Olwal, J.O. The drying kinetics of kale (Brsssica oleracea) in a convective hot air dryer. J. Food Eng., 2005, 71 373-378.

doi: 10.1016/j.jfoodeng.2004.10.041

Doymaz, I. Drying characteristics and kinetics of okra. J. Food Eng., 2005b, 69, 275-279.

doi: 10.1016/j.jfoodeng.2004.08.019

Corzo, O.; Bracho, N. & Alvarez, C. Water effective diffusion coefficient of mango slices at different maturity stages during air drying. J. Food Eng., 2008, 87, 479-484.

doi: 10.1016/j.jfoodeng.2007.12.025

Lin, Y.P.; Tsen, J.H. & King, V.A.E. Effects of far-infrared radiation on the freeze-drying of sweet potato. J. Food Eng., 2005, 68, 249-255.

doi: 10.1016/j.jfoodeng.2004.05.037

Berruti, F.M.; Klaas, M.; Briens, C. & Berruti, F. Model for convective drying of carrots for pyrolysis. J. Food Eng., 2009, 92, 196-201.

doi: 10.1016/j.jfoodeng.2008.10.036

Jena, S. & Das, H. Modelling for vacuum drying characteristics of coconut presscake. J. Food Eng., 2007, 79, 92-99.

doi: 10.1016/j.jfoodeng.2006.01.032

Doymaz, I. Air-drying characteristics of tomatoes. J. Food Eng., 2007, 78, 1291-1297.

doi: 10.1016/j.jfoodeng.2005.12.047

Doymaz, I. Drying kinetics of white mulberry. J. Food Eng., 2004b, 61, 341-346.

doi: 10.1016/S0260-8774(03)00138-9

Kaleemullah, S. & Kailappan, R. Modelling of thin-layer drying kinetics of red chillies. J. Food Eng., 2006, 76, 531-537.

doi: 10.1016/j.jfoodeng.2005.05.049

Doymaz, I. Effect of dipping treatment on air drying of plums. J. Food Eng., 2004a, 64, 465-470.

doi: 10.1016/j.jfoodeng.2003.11.013

Kingsly, A.R.P. & Singh, D.B. Drying kinetics of pomegranate arils. J. Food Eng., 2007, 79, 741-744.

doi: 10.1016/j.jfoodeng.2006.02.033

Lahsaani, S.; Kouhila, M.; Mahrouz, M. & Jaouhari, J.T. Drying kinetics of prickly pear fruit (Opuntia ficus indica). J. Food Eng., 2004, 61, 173-179.

doi: 10.1016/S0260-8774(03)00084-0

Hil, C.L.; Law, C.L. & Suzannah, S. Drying kinetics of the individual layer of cocoa beans during heat pump drying. J. Food Eng., 2012, 109, 276-282.

doi: 10.1016/j.jfoodeng.2011.08.017

Erenturk, S. & Erenturk, K. Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J. Food Eng., 2007, 78, 905-912.

doi: 10.1016/j.jfoodeng.2005.11.031

Cui, Z.W.; Xu, S.Y. & Sun, D.W. Microwave-vacuum drying kinetics of carrot slices. J. Food Eng., 2004. 65, 157-164.

doi: 10.1016/j.jfoodeng.2004.01.008

Gokhale, S.V. & Lele, S.S. Dehydration of red beet (Beta vulgaris) by hot air drying: Process optimization and mathematical modelling. Food Sci. Biotechnol., 2011, 20(4), 955-964.

doi: 10.1007/s10068-011-0132-4

Figiel, A. Drying kinetics and quality of beetroot dehydrated by combination of convective and vacuum-microwave methods. J. Food Eng., 2010, 98, 461-470.

doi: 10.1016/j.jfoodeng.2010.01.029

Ranganna, S. Hand book of analysis and quality control for fruits and vegetable products. Second edition, Tata McGraw-Hill Publication company Limited, New Delhi, 1986.

Parti, M. Selection of mathematical models for drying of grain in thin layers. J. Agri. Eng. Res., 1993, 54, 339-352.

doi: 10.1006/jaer.1993.1026

Crank, J. 1975. The mathematics of diffusion. Oxford, England, Claredon Press

Demirtas, C.; Ayhan, T. & Kaygusuz, K. Drying behaviour of hazelnuts. J. Sci. Food Agri., 1998, 76, 559-564.

doi: 10.1002/(SICI)1097-0010(199804)76:4<559::AID-JSFA988>3.0.CO;2-J

Resio, A.N.C.; Aguerre, R.J. & Suarez, C. Drying characteristics of amaranth grain. J. Food Eng., 2004. 65: 197-203.

doi: 10.1016/j.jfoodeng.2004.01.015

Debaste, F.; Halloin, V.; Bossart, L. & Haut, B. A new modeling approach for the prediction of yeast drying rates in fluidized beds. J. Food Eng., 2008, 84 335-347.

doi: 10.1016/j.jfoodeng.2007.05.022

Lewis, W.K. The rate of drying of solid materials. Indus Eng. Chem., 1921, 13(5), 427-432.

doi: 10.1021/ie50137a021

Page, G. Factors influencing the maximum rates of air-drying shelled corn in thin layers. M Sc Thesis, Purdue University, Lafayette, IN, USA. 1949.

Ovethults, D.D.; White, G.M.; Hamilton, H.E. & Rose, I.J. Drying soybeans with heated air. Trans ASAE. 1973, 16(1), 112-113.

doi: 10.13031/2013.37459) @1973

Henderson, S.M. & Pabis, S. Grain drying theory II: Temperature effects on drying coefficients. J. Agri. Eng. Res., 1961, 6, 169-174.

Yagcioglu, A.; Degirmencioglu, A. & Cagatay, F. Drying characteristics of laurel leaves under different drying conditions. In Pro 7th int. cong. Agri. mechan. Energy. Adana, Turkey. 1999.

Henderson, S.M. Progress in developing the thin-layer drying equation. Trans. ASAE, 1974, 17, 1167-1168/1172.

doi: 10.13031/2013.37052) @1974

Wang, C.Y. & Singh, R.P. Use of variable equilibrium moisture content in modeling rice drying. ASAE paper. 1978, 78-6505, ASAE, St. Joseph MI 49085

Sharaf-Eldeen, Y.I.; Blaisdell, J.L. & Hamdy, M.Y. A model for ear corn drying. Trans. ASAE, 1980, 5, 1261-1265.

doi: 10.13031/2013.34757) @1980

Verma, L.R.; Bucklin, R.A.; Endan, J.B. & Wratten, F.T. Effects of drying air parameters on rice drying models. Trans ASAE, 1985, 28, 296-301.

doi: 10.13031/2013.32245) @1985

Midilli, A.: Kucuk, H. & Yapar, Z. A new model for single-layer drying. Drying Technol., 2002, 20, 1503-1513.

doi: 10.1081/DRT-120005864

Demir, V.; Gunhan, T. & Yagcioglu, A.K. Mathematical modelling of convective drying of green table olives. Biosys. Eng., 2007, 98, 47-53.

doi: 10.1016/j.biosystemseng.2007.06.011

Karathanos, V.T. Determination of water content of dried fruits by drying kinetics. J Food Eng., 1999, 39, 337-344

doi: 10.1016/S0260-8774(98)00132-0

Aghbashlo, M.; Kianmehr, M.H.; Khani, S. & Ghasemi, M. Mathematical modelling of thin-layer drying of carrot. Int Agrophy., 2009, 23, 313-317.

Thompson, T.L.; Peart, R.M. & Foster, G.H. Mathematical simulation of corn drying- A new model. Trans ASAE, 1968, 11, 582-586.

doi: 10.13031/2013.39473) @1968

Doymaz, I. Drying kinetics of black grapes treated with different solutions. J. Food Eng., 2006, 76, 212-217.

doi: 10.1016/j.jfoodeng.2005.05.009

Panchariya, P.C.; Popovic, D. & Sharma, A.I. Thin-layer modelling of black tea drying process. J. Food Eng., 2002, 52, 349-357.

doi: 10.1016/S0260-8774(01)00126-1

Tasirin, S.M., Kamarudin, S.K., Jaafar, K. & Lee, K.F. The drying kinetics of bird’s chillies in a fluidized bed dryer. J. Food Eng., 2007, 79, 695-705.

doi: 10.1016/j.jfoodeng.2006.02.032

Togrul, I.T. & Pehlivan, D. Mathematical modelling of solar drying of apricots in thin layers. J. Food Eng., 2002, 55, 209-216.

doi: 10.1016/S0260-8774(02)00065-1

Singh, G.D.; Sharma, R.; Bawa, A.S. & Saxena, D.C. Drying and rehydration characteristics of water chestnut (Trapa natans) as a function of drying air temperature. J. Food Eng., 2008, 87, 213-221.

doi: 10.1016/j.jfoodeng.2007.11.027

Beltagy, A.E.; Gamea, G.R. & Essa, A.H.A. Solar drying characteristics of strawberry. J. Food Eng., 2007, 78 456-464.

doi: 10.1016/j.jfoodeng.2005.10.015

Ondier, G.O.; Siebenmorgen, T.J. & Mauromoustakos, A. Low-temperature, low-relative humidity drying of rough rice. J. Food Eng., 2010, 100, 545-550.

doi: 10.1016/j.jfoodeng.2010.05.004

Akpinar, E.K.; Bicer, Y. & Cetinkaya, F. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J Food Eng., 2006. 75, 308-315.

doi: 10.1016/j.jfoodeng.2005.04.018

Doymaz, I. Convective air drying characteristics of thin layer carrots. J. Food Eng., 2004c, 61, 359-364.

doi: 10.1016/S0260-8774(03)00142-0

Ozkan, I.A.; Akbudak, B. & Akbudak, N. Microwave drying characteristics of spinach. J Food Eng., 2007, 78, 577-583.

doi: 10.1016/j.jfoodeng.2005.10.026

Doymaz, I. & Pala, M. The thin-layer drying characteristics of corn. J. Food Eng., 2003, 60, 125-130.

doi: 10.1016/S0260-8774(03)00025-6

Sharma, G.P.; Verma, R.C. & Pathare, P.B. Thin-layer infrared radiation drying of onion slices. J. Food Eng., 2005, 67, 361-366.

doi: 10.1016/j.jfoodeng.2004.05.002

Madamba, P.S.; Driscoll, R.H. & Buckle, K.A. The thin-layer drying characteristics of garlic slices. J. Food Eng., 1996, 29, 75-97.

doi: 10.1016/0260-8774(95)00062-3

Babalis, S.J. & Belessiotis, V.G. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J. Food Eng., 2004, 65, 449-458.

doi: 10.1016/j.jfoodeng.2004.02.005

Iguaz, A.; Martin, M.B.S.; Mate, J.I.; Fernandez, T. & Virseda, P. Modelling effective moisture diffusivity of rough rice (Lido cultivar) at low drying temperature. J. Food Eng., 2003, 59, 253-258.

doi: 10.1016/S0260-8774(02)00465-X

Tang, Z.; Cenkowski, S. & Izydorczyk, M. Thin-layer drying of spent grains in superheated steam. J. Food Eng., 2005, 67, 457-465.

doi: 10.1016/j.jfoodeng.2004.04.040

Basunia, M.A. & Abe, T. Thin-layer solar drying characteristics of rough rice under natural convection. J. Food Eng., 2001, 47, 295-301.

doi: 10.1016/S0260-8774(00)00133-3

Xanthopoulos, G., Oikonomou, N. & Lambrinos, G. Applicability of a single-layer drying model to predict the drying rate of whole figs. J. Food Eng., 2007, 81, 553-559.

doi: 10.1016/j.jfoodeng.2006.11.033

Rao, P.S.; Bal, S. & Goswami, T.K. Modelling and optimization of drying variables in thin layer drying of parboiled paddy. J. Food Eng., 2007, 78, 480-487.

doi: 10.1016/j.jfoodeng.2005.10.019

Sacilik, K. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J. Food Eng., 2007, 79, 23-30

doi: 10.1016/j.jfoodeng.2006.01.023

Mohapatra, D. & Rao, P.S. A thin layer drying model of parboiled wheat. J. Food Eng., 2005, 66, 513-518.

doi: 10.1016/j.jfoodeng.2004.04.023

Doymaz, I.; Tugrul, N. & Pala, M. Drying characteristics of dill and parsley leaves. J. Food Eng., 2006, 77, 559-565.

doi: 10.1016/j.jfoodeng.2005.06.070

Doymaz, I. Pretreatment effect on sun drying of mulberry fruits (Morus alba L.) J. Food Eng., 2004d, 65, 205-209.

doi: 10.1016/j.jfoodeng.2004.01.016

Doymaz, I. Drying behaviour of green beans. J. Food Eng., 2005a, 69 161-165.

doi: 10.1016/j.jfoodeng.2004.08.009

Roberts, J.S.; Kidd, D.R. & Padilla-Zakour, O. Drying kinetics of grape seeds. J. Food Eng., 2008, 89, 460-465.

doi: 10.1016/j.jfoodeng.2008.05.030

Goyal, R.K.; Kingsly, A.R.P.; Manikantan, M.R. & Ilyas, S.M. Mathematical modeling of thin layer drying kinetic of plum in a tunnel dryer. J. Food Eng., 2007, 79, 176-180.

doi: 10.1016/j.jfoodeng.2006.01.041

Gaston, A.L.; Abalone, R.M. & Giner, S.A. Wheat drying kinetics, Diffusivities for sphere and ellipsoid by finite elements. J. Food Eng., 2002, 52, 313-322.

doi: 10.1016/S0260-8774(01)00121-2

.

Published
2019-04-11
How to Cite
Manjunatha, S., & Raju, P. (2019). Mathematical Modelling the Drying Kinetics of Beetroot Strips during Convective Drying at Different Temperatures. Defence Life Science Journal, 4(2), 140-149. https://doi.org/10.14429/dlsj.4.12176
Section
General Papers