TY - JOUR AU - K. Plog AU - R. Muralidharan PY - 2013/10/01 Y2 - 2024/03/29 TI - Custom-Designed HI-V Semiconductor Mimstmctures Wed to the Ultimate Physical Limit : U I ~ - L a y e r GaAs/AUs ~uperhtticesa nd Delta- (Monolayer) Doping in GaAs/Al,Ga,-As Structures JF - Defence Science Journal JA - DSJ VL - 39 IS - 4 SE - General Papers DO - 10.14429/dsj.39.4818 UR - https://publications.drdo.gov.in/ojs/index.php/dsj/article/view/4818 AB - Two prototype artificially-layered semiconductor structures are presented in which the concept of microscopical structuring of solids is scaled to its ultimate physical limit normal to the crystal surface. In both the(G~AS),/(AIASm)~o no layer superlattice and in the delta- (or monolayer)doped G~AS/AI~G~,-s~truAcStu res, which have been grown by molecular beam epitaxy, the characteristic material lengths have reached a spatialextent nornlal to the surface of less than the lattice constant. The (GaAs),/(AIAs), ultrathin-layer superlattices exhibit novel optical properties due tothe indirect-gap nature ofthe constituent AlAs layers. The minority-carrier lifetimes can be tailored over four orders of magnitude by appropriately designing the superlattice configuration. This feature opens up new fieldsof application in lasers and in nonlinear photonic and optoelectronic devices. The narrow buried doping channel in delta-doped GaAslayers andin GaAs/AI,Gal-xAs structures leads to a significant improvement of the electrical properties. Based on this concept, non alloyed ohmic contacts,field-effect transistors with ;cry high transconductance, unpinned GaAs surfaces for MOS devices, and electron mobilities as high as 10' cm2v-'s-Ihave been fabricated. ER -