Design of Frequency Invariant Wideband Beamformer with Real and Symmetric FIR Filters

An approach to wideband beamformer with frequency invariant property is proposed by optimising the space-time two-dimensional finite impulse response (FIR) filters. Frequency invariant beam pattern brings some restrictions on frequency bandwith and filter length. Using the Landau-Pollak theorem to estimate the rank of wideband signals, we give the lower bound of filter length respect to array element numbers and the relative bandwidth of wideband signal. With the expression of beam pattern using real and symmetric FIR filters, we develop corresponding optimisation formation considering the robustness of beamformer as well, which can be easily solved by the least mean square (LMS) algorithm. A design example is provided to show the effectiveness of the proposed method


Keywords:    Wideband beamformerfrequency invariantfinite impulse response filtersLandau-Pollak theorem


Wideband beamforming has been studied extensively due to its potential application in radar, sonar, and communicationL1,2. For wideband signals, the inter-element phase shift is frequency dependent. If using traditional beamforming techniques for narrowband signals, significant degradation of performance will occur. According to previous research, three main techniques are proposed for wideband beamforming, subband processing3,4,5, direct two-dimensional discrete Fourier transformation (2D-IDFT) method6,7,8, and FIR filters structure9,10,11.

Using non-overlapped band-pass filters, the wideband signal can be decomposed into several narrowband signals. Performing narrowband beamforming technique to each subband and summing up the outputs, the resulting wideband beamformer is achieved. Subband processing provides an easy way to deal with the wideband signal, but also introduces some problems, such as the non-continuity in phase of the output signal.

By exploiting the Fourier transform relationship between the array’s spatial and temporal parameters and its beam pattern, L. Wei7,8 proposed approaches for frequency invariant beamformer. Starting from the desired frequency invariant beam pattern, using a series of substitutions and IDFT, the desired frequency response of each array element are obtained. In the direct IDFT structure, the frequency sampling mode will influence the system performance.

In FIR filters structure, a bank of filters appending to each array elements are used to form frequency dependent response to compensate the inter-element phase shift. The coefficients of each filterbanks can be achieved by optimisation methods such that the resulting beam pattern approximates the desired one. However, to get frequency invariant beamformer, there are some restrictions on these filters. On the other hand, the number of coefficients to be optimised will be extremely large for large arrays, which brings difficulty in computation.

For clarity in this article, a uniformed linear array (ULA) with isotropic antenna elements is considered. The extensions to other array configurations such as sparse linear array, two or three dimensional arrays could be gotten by similar idea.

2.1   Wideband Array Pattern Response

The ULA has N array elements aligned with the x-axis with inter-element distance d. The angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3780@ is measured with respect to the x-axis, with zero degrees lying perpendicular to the axis. The far-field beam pattern of the ULA is given as1



P(f,θ)= n=0 N1 a n e j2πfndsinθ/c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiabgYcaSiabeI7aXjaacMcacqGH9aqpdaaeWbqabSqaaiaa d6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIu oacaaMc8UccaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamyzamaaCaaa beWcbaGaeyOeI0IaamOAaiaaikdacqaHapaCcaWGMbGaamOBaiaads gacaGGZbGaaiyAaiaac6gacqaH4oqCcqGHVaWlcaWGJbaaaaaa@5628@       (1)

where c is the propagation speed in free space, f is the radiating frequency and an are complex weight coefficients which are chosen to steer the beam and to control sidelobes.

For wideband arrays, the radiating frequency f will cover a range of finite bandwidth, i.e. f[ f l , f u ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgacqGHii IZcaGGBbGaamOzamaaBaaaleaacaWGSbaabeaakiabgYcaSiaadAga daWgaaWcbaGaamyDaaqabaGccaGGDbaaaa@3F0A@ where f l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamiBaaqabaaaaa@37D2@ and f u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamyDaaqabaaaaa@37DB@ are the lower and upper bound frequency respectively. The bandwidth B= f u f l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaWGMbWaaSbaaSqaaiaadwhaaeqaaOGaeyOeI0IaamOzamaaBaaa leaacaWGSbaabeaaaaa@3CA7@ From Eqn (1), we can see that the beam pattern of wideband array changes with frequency.

2.2   Wideband Beamforming with FIR Filterbanks

In order to compensate the frequency dependence of wideband beam pattern, a solution2 is replacing the complex coefficients an with frequency responses H n (f) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOBaaqabaGccaGGOaGaamOzaiaacMcaaaa@3A04@ i.e.

P(f,θ)= n=0 N1 H n (f) e j2πfndsinθ/c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiabgYcaSiabeI7aXjaacMcacqGH9aqpdaaeWbqabSqaaiaa d6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIu oacaaMc8UccaWGibWaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadAga caGGPaGaamyzamaaCaaabeWcbaGaeyOeI0IaamOAaiaaikdacqaHap aCcaWGMbGaamOBaiaadsgacaGGZbGaaiyAaiaac6gacqaH4oqCcqGH VaWlcaWGJbaaaOGaeyilaWcaaa@5941@          (2)

A special realization of frequency responses H n (f) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOBaaqabaGccaGGOaGaamOzaiaacMcaaaa@3A04@ is the space-time processor12 as shown inFig 1.


Figure 1.Wideband beamforming by space-time processor.


In Fig 1. the desired frequency response H n (f) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOBaaqabaGccaGGOaGaamOzaiaacMcaaaa@3A04@ of the nth array element is obtained by FIR filters with length M, i.e.



H n (f)= m=0 M1 h m,n e j2πfm T s ,n=0,1,...,N1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOBaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqpdaaeWbqa bSqaaiaad2gacqGH9aqpcaaIWaaabaGaamytaiabgkHiTiaaigdaa0 GaeyyeIuoacaaMc8UccaWGObWaaSbaaSqaaiaad2gacqGHSaalcaWG UbaabeaakiaadwgadaahaaqabSqaaiabgkHiTiaadQgacaaIYaGaeq iWdaNaamOzaiaad2gacaWGubWaaSbaaWqaaiaadohaaeqaaaaakiab gYcaSiaad6gacqGH9aqpcaaIWaGaeyilaWIaaGymaiabgYcaSiabg6 caUiabg6caUiabg6caUiabgYcaSiaad6eacqGHsislcaaIXaaaaa@5D7B@       (3)

where Ts is the sampling period. The wideband beam pattern with FIR filterbanks can be expressed as



P(f,θ)= n=0 N1 m=0 M1 h m,n e j2πfm T s e j2πfndsinθ/c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiabgYcaSiabeI7aXjaacMcacqGH9aqpdaaeWbqabSqaaiaa d6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIu oacaaMc8UcdaaeWbqabSqaaiaad2gacqGH9aqpcaaIWaaabaGaamyt aiabgkHiTiaaigdaa0GaeyyeIuoacaaMc8UccaWGObWaaSbaaSqaai aad2gacqGHSaalcaWGUbaabeaakiaadwgadaahaaqabSqaaiabgkHi TiaadQgacaaIYaGaeqiWdaNaamOzaiaad2gacaWGubWaaSbaaWqaai aadohaaeqaaaaakiaadwgadaahaaqabSqaaiabgkHiTiaadQgacaaI YaGaeqiWdaNaamOzaiaad6gacaWGKbGaai4CaiaacMgacaGGUbGaeq iUdeNaey4la8Iaam4yaaaakiabgYcaSaaa@6B48@       (4)

In the common case, the inter-element distance d is set to be half-wavelength of the maximum working frequency to avoid grating lobes, i.e. d= λ min /2=c/(2 f u ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacqGH9a qpcqaH7oaBdaWgaaWcbaGaamyBaiaadMgacaWGUbaabeaakiabg+ca ViaaikdacqGH9aqpcaWGJbGaey4la8IaaiikaiaaikdacaWGMbWaaS baaSqaaiaadwhaaeqaaOGaaiykaaaa@4524@ The sampling frequency f s =1/ T s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4CaaqabaGccqGH9aqpcaaIXaGaey4la8IaamivamaaBaaa leaacaWGZbaabeaaaaa@3C8B@ is usually twice of the maximum working frequency, i.e. f s =2 f u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4CaaqabaGccqGH9aqpcaaIYaGaamOzamaaBaaaleaacaWG 1baabeaaaaa@3BB6@ . Then we can get d/c=1/(2 f u )=1/ f s = T s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacqGHVa WlcaWGJbGaeyypa0JaaGymaiabg+caViaacIcacaaIYaGaamOzamaa BaaaleaacaWG1baabeaakiaacMcacqGH9aqpcaaIXaGaey4la8Iaam OzamaaBaaaleaacaWGZbaabeaakiabg2da9iaadsfadaWgaaWcbaGa am4Caaqabaaaaa@4726@ Substitute d/c= T s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacqGHVa WlcaWGJbGaeyypa0JaamivamaaBaaaleaacaWGZbaabeaaaaa@3B87@ into Eqn (4), it yields



P(f,θ)= n=0 N1 m=0 M1 h m,n e j2πf(m+nsinθ) T s , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiabgYcaSiabeI7aXjaacMcacqGH9aqpdaaeWbqabSqaaiaa d6gacqGH9aqpcaaIWaaabaGaamOtaiabgkHiTiaaigdaa0GaeyyeIu oacaaMc8UcdaaeWbqabSqaaiaad2gacqGH9aqpcaaIWaaabaGaamyt aiabgkHiTiaaigdaa0GaeyyeIuoacaaMc8UccaWGObWaaSbaaSqaai aad2gacqGHSaalcaWGUbaabeaakiaadwgadaahaaqabSqaaiabgkHi TiaadQgacaaIYaGaeqiWdaNaamOzaiaacIcacaWGTbGaey4kaSIaam OBaiaacohacaGGPbGaaiOBaiabeI7aXjaacMcacaWGubWaaSbaaWqa aiaadohaaeqaaaaakiabgYcaSaaa@6467@      (5)

Now, the wideband beamforming problem is transformed into designing the filterbank coefficients h m,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamyBaiabgYcaSiaad6gaaeqaaaaa@39AC@ to insure that the resulting beam pattern approximate the desired one over the working frequency band.

2.3   Restrictions of Frequency Invariant Wideband Beamforming

To be frequency invariant, the beam pattern P(f,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI cacaWGMbGaeyilaWIaeqiUdeNaaiykaaaa@3BAA@ must be a function of only θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3780@ or sinθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacohacaGGPb GaaiOBaiabeI7aXbaa@3A56@ Let F(sinθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa Gaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaaaa@3C7A@ be such a frequency invariant beam pattern. From Eqn (5), it seems that the filter coefficients h m,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamyBaiabgYcaSiaad6gaaeqaaaaa@39AC@ could be computed directly and easily by applying 2D-IDFT on F(sinθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa Gaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaaaa@3C7A@ . However, there are some restrictions between F(sinθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa Gaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaaaa@3C7A@ and h m,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamyBaiabgYcaSiaad6gaaeqaaaaa@39AC@ .


2.3.1   Restriction on Bandwidth

Frequency invariant beam pattern could only be obtained over limited working frequency band. Otherwise, if P( f 1 ,θ)=P( f 2 ,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzamaaBaaaleaacaaIXaaabeaakiabgYcaSiabeI7aXjaacMca cqGH9aqpcaWGqbGaaiikaiaadAgadaWgaaWcbaGaaGOmaaqabaGccq GHSaalcqaH4oqCcaGGPaaaaa@4419@ for arbitrary frequency f1 and f2, we can get


n=0 N1 m=0 M1 h m,n ( e j2π f 1 x m,n e j2π f 2 x m,n )=0, f 1 , f 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaqahabeWcba GaamOBaiabg2da9iaaicdaaeaacaWGobGaeyOeI0IaaGymaaqdcqGH ris5aiaaykW7kmaaqahabeWcbaGaamyBaiabg2da9iaaicdaaeaaca WGnbGaeyOeI0IaaGymaaqdcqGHris5aiaaykW7kiaadIgadaWgaaWc baGaamyBaiabgYcaSiaad6gaaeqaaOGaaiikaiaadwgadaahaaqabS qaaiabgkHiTiaadQgacaaIYaGaeqiWdaNaamOzamaaBaaameaacaaI XaaabeaaliaadIhadaWgaaadbaGaamyBaiabgYcaSiaad6gaaeqaaa aakiabgkHiTiaadwgadaahaaqabSqaaiabgkHiTiaadQgacaaIYaGa eqiWdaNaamOzamaaBaaameaacaaIYaaabeaaliaadIhadaWgaaadba GaamyBaiabgYcaSiaad6gaaeqaaaaakiaacMcacqGH9aqpcaaIWaGa eyilaWIaeyiaIiIaamOzamaaBaaaleaacaaIXaaabeaakiabgYcaSi aadAgadaWgaaWcbaGaaGOmaaqabaaaaa@6C9B@     (6)

where x m,n =(m+nsinθ) T s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyBaiabgYcaSiaad6gaaeqaaOGaeyypa0Jaaiikaiaad2ga cqGHRaWkcaWGUbGaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaiaads fadaWgaaWcbaGaam4Caaqabaaaaa@4575@ By properly choosing a series of discrete frequencies f 1,k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaiabgYcaSiaadUgaaeqaaaaa@3970@ and f 2,k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaiabgYcaSiaadUgaaeqaaaaa@3971@ k=1,2,...,K, the Eqn (6) can be written as



Ah=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahgeacaWHOb Gaeyypa0JaaGimaaaa@3944@

[A] k,m+nM = e j2π f 1,k x m,n e j2π f 2,k x m,n , [h] m+nM = h m,n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaxcW7caGGBb GaaCyqaiaac2fadaWgaaWcbaGaam4AaiabgYcaSiaad2gacqGHRaWk caWGUbGaamytaaqabaGccqGH9aqpcaWGLbWaaWbaaeqaleaacqGHsi slcaWGQbGaaGOmaiabec8aWjaadAgadaWgaaadbaGaaGymaiabgYca SiaadUgaaeqaaSGaamiEamaaBaaameaacaWGTbGaeyilaWIaamOBaa qabaaaaOGaeyOeI0IaamyzamaaCaaabeWcbaGaeyOeI0IaamOAaiaa ikdacqaHapaCcaWGMbWaaSbaaWqaaiaaikdacqGHSaalcaWGRbaabe aaliaadIhadaWgaaadbaGaamyBaiabgYcaSiaad6gaaeqaaaaakiaa cYcacaaMe8UaaGjbVlaaxcW7caGGBbGaaCiAaiaac2fadaWgaaWcba GaamyBaiabgUcaRiaad6gacaWGnbaabeaakiabg2da9iaadIgadaWg aaWcbaGaamyBaiabgYcaSiaad6gaaeqaaOGaeyOla4caaa@6D54@       (7)

where

For a lot of choices of f 1,k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaiabgYcaSiaadUgaaeqaaaaa@3970@ and f 2,k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGOmaiabgYcaSiaadUgaaeqaaaaa@3971@ , the matrix A is non-singularity and h=0. Therefore, to get non-zeros FIR filterbanks, the working frequency band must be limited.


2.3.2    Restriction on Filterbanks

For given frequency bandwidth B= f u f l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaWGMbWaaSbaaSqaaiaadwhaaeqaaOGaeyOeI0IaamOzamaaBaaa leaacaWGSbaabeaaaaa@3CA7@ , the length of filterbanks M must be long enough to ensure that the space-time processor in Fig 1. has sufficient degrees of freedom (DOF) to form the desiring beam pattern. With sufficient large M, the equations in (7) could have non-zero solutions. On the other hand, filterbanks with real coefficients are easier to be implemented than those with complex coefficients. Further, if the filterbank coefficients are symmetric, the implementation costs and computation requirements can be reduced. Therefore, we limit the coefficients h m,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamyBaiabgYcaSiaad6gaaeqaaaaa@39AC@ to be real and symmetric, i.e.

h m,n = h m,N1n , h m,n = h M1m,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGTbGaeyilaWIaamOBaaqabaGccqGH9aqpcaWGObWaaSba aSqaaiaad2gacqGHSaalcaWGobGaeyOeI0IaaGymaiabgkHiTiaad6 gaaeqaaOGaeyilaWIaamiAamaaBaaaleaacaWGTbGaeyilaWIaamOB aaqabaGccqGH9aqpcaWGObWaaSbaaSqaaiaad2eacqGHsislcaaIXa GaeyOeI0IaamyBaiabgYcaSiaad6gaaeqaaaaa@4F5B@      (8)

3.1   Determination of Filterbank Length

For the space-time processor in Fig 1., the system DOF rs is defined as the number of free parameters. Based on the adaptive signal processing theory, the system DOF rs should to larger than the DOF of the received wideband signal to form effective beam pattern­12. If the space-time processor has real and symmetric filterbank coefficients, the system DOF rs can be computed directly by counting the number of free parameters and given as



r s ={ MN/4 M,Neven (M+1)(N+1)/4 M,Nodd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaam4CaaqabaGccqGH9aqpdaGabaqaauaabeqaciaaaeaacaWG nbGaamOtaiabg+caViaaisdaaeaacaWGnbGaeyilaWIaamOtaiaayo W7caWGLbGaamODaiaadwgacaWGUbaabaGaaiikaiaad2eacqGHRaWk caaIXaGaaiykaiaacIcacaWGobGaey4kaSIaaGymaiaacMcacqGHVa WlcaaI0aaabaGaamytaiabgYcaSiaad6eacaaMd8Uaam4Baiaadsga caWGKbaaaaGaay5Eaaaaaa@5556@       (9)

We denote rw as the DOF of the received wideband signal. It can be estimated by the Landau-Pollak theorem which is expressed as follows.

Theorem13,14 : A signal with frequency bandwidth B and time duration T has its energy concentrated in its largest r w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaam4Daaqabaaaaa@37E9@ eigenvalues, r w =2BT+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaam4DaaqabaGccqGH9aqpcaaIYaGaamOqaiaadsfacqGHRaWk caaIXaaaaa@3CF2@

For wideband beamforming problem in Eqn (5), the equivalent space-time two-dimensional signal has the following form,



s m,n = e j2πf(m+nsinθ) T s , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohadaWgaa WcbaGaamyBaiabgYcaSiaad6gaaeqaaOGaeyypa0JaamyzamaaCaaa beWcbaGaeyOeI0IaamOAaiaaikdacqaHapaCcaWGMbGaaiikaiaad2 gacqGHRaWkcaWGUbGaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaiaa dsfadaWgaaadbaGaam4CaaqabaaaaOGaeyilaWcaaa@4CB5@        (10)

where m=0,1,...,M1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaaIWaGaeyilaWIaaGymaiabgYcaSiabg6caUiabg6caUiabg6ca UiabgYcaSiaad2eacqGHsislcaaIXaaaaa@4115@ , n=0,1,...,N1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIWaGaeyilaWIaaGymaiabgYcaSiabg6caUiabg6caUiabg6ca UiabgYcaSiaad6eacqGHsislcaaIXaaaaa@4117@ and θ( θ min , θ max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgI GiolaacIcacqaH4oqCdaWgaaWcbaGaamyBaiaadMgacaWGUbaabeaa kiabgYcaSiabeI7aXnaaBaaaleaacaWGTbGaamyyaiaadIhaaeqaaO Gaaiykaaaa@44C1@ According to the space time equivalence12,14 , the two-dimensional signal above can be viewed as the equivalent one-dimensional signal with bandwidth B= f u f l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaWGMbWaaSbaaSqaaiaadwhaaeqaaOGaeyOeI0IaamOzamaaBaaa leaacaWGSbaabeaaaaa@3CA7@ and a maximal time duration of (M1+2(N1)) T s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIcacaWGnb GaeyOeI0IaaGymaiabgUcaRiaaikdacaGGOaGaamOtaiabgkHiTiaa igdacaGGPaGaaiykaiaadsfadaWgaaWcbaGaam4Caaqabaaaaa@410C@ . Applying the Landau-Pollak theorem, the DOF of the received wideband signal can be easily obtained, i.e.,



r w =2BT+1 =2( f u f l )(M1+2(N1)) T s +1 =2( f u f l )(M+2N3)/(2 f u )+1 =(2N+M3) B r +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamOCam aaBaaaleaacaWG3baabeaakiaaxcW7caWLa8Uaeyypa0JaaCjaVlaa ikdacaWGcbGaamivaiabgUcaRiaaigdaaeaacaaMb8UaaGzaVlaayk W7cqGH9aqpcaaIYaGaaiikaiaadAgadaWgaaWcbaGaamyDaaqabaGc cqGHsislcaWGMbWaaSbaaSqaaiaadYgaaeqaaOGaaiykaiaacIcaca WGnbGaeyOeI0IaaGymaiabgUcaRiaaikdacaGGOaGaamOtaiabgkHi TiaaigdacaGGPaGaaiykaiaadsfadaWgaaWcbaGaam4CaaqabaGccq GHRaWkcaaIXaaabaGaaGzaVlaaygW7caaMc8Uaeyypa0JaaGOmaiaa cIcacaWGMbWaaSbaaSqaaiaadwhaaeqaaOGaeyOeI0IaamOzamaaBa aaleaacaWGSbaabeaakiaacMcacaGGOaGaamytaiabgUcaRiaaikda caWGobGaeyOeI0IaaG4maiaacMcacqGHVaWlcaGGOaGaaGOmaiaadA gadaWgaaWcbaGaamyDaaqabaGccaGGPaGaey4kaSIaaGymaaqaaiaa ygW7caaMb8UaaGPaVlabg2da9iaacIcacaaIYaGaamOtaiabgUcaRi aad2eacqGHsislcaaIZaGaaiykaiaadkeadaWgaaWcbaGaamOCaaqa baGccqGHRaWkcaaIXaaaaaa@849C@       (11)

where B r =( f u f l )/ f u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkeadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaGGOaGaamOzamaaBaaaleaacaWG 1baabeaakiabgkHiTiaadAgadaWgaaWcbaGaamiBaaqabaGccaGGPa Gaey4la8IaamOzamaaBaaaleaacaWG1baabeaaaaa@4232@ is the relative bandwidth of interesting signal frequency.

Therefore, we get the conditions for filterbank length M as follow



r s > r w { M> (2N3) B r +1 N/4 B r Neven M> (2N3) B r N/4+3/4 (N+1)/4 B r Nodd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaam4CaaqabaGccqGH+aGpcaWGYbWaaSbaaSqaaiaadEhaaeqa aOGaeyO0H49aaiqaaeaafaqabeGacaaabaGaamytaiabg6da+maala aabaGaaiikaiaaikdacaWGobGaeyOeI0IaaG4maiaacMcacaWGcbWa aSbaaSqaaiaadkhaaeqaaOGaey4kaSIaaGymaaqaaiaad6eacqGHVa WlcaaI0aGaeyOeI0IaamOqamaaBaaaleaacaWGYbaabeaaaaaakeaa caWGobGaaG5aVlaadwgacaWG2bGaamyzaiaad6gaaeaacaWGnbGaey Opa4ZaaSaaaeaacaGGOaGaaGOmaiaad6eacqGHsislcaaIZaGaaiyk aiaadkeadaWgaaWcbaGaamOCaaqabaGccqGHsislcaWGobGaey4la8 IaaGinaiabgUcaRiaaiodacqGHVaWlcaaI0aaabaGaaiikaiaad6ea cqGHRaWkcaaIXaGaaiykaiabg+caViaaisdacqGHsislcaWGcbWaaS baaSqaaiaadkhaaeqaaaaaaOqaaiaad6eacaaMd8Uaam4Baiaadsga caWGKbaaaaGaay5Eaaaaaa@70C6@       (12)

3.2   Optimisation of Filterbank Coefficients

The optimisation of filterbanks is to insure that the resulting wideband beam pattern approximate the reference pattern over the interesting frequency band. For real and symmetric filterbanks, after substituting Eqn (8) into Eqn (5), the resulting beam pattern is real and could be expressed as follows. When M and N are even numbers,



P(f,θ)= n=0 N/21 m=0 M/21 { h m,n cos[πf(M2m1) T r ] ×cos[πf(N2n1)sin(θ) T r ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamiuai aacIcacaWGMbGaeyilaWIaeqiUdeNaaiykaiabg2da9iaaxcW7daae WbqabSqaaiaad6gacqGH9aqpcaaIWaaabaGaamOtaiabg+caViaaik dacqGHsislcaaIXaaaniabggHiLdGaaGPaVRWaaabCaeqaleaacaWG TbGaeyypa0JaaGimaaqaaiaad2eacqGHVaWlcaaIYaGaeyOeI0IaaG ymaaqdcqGHris5aiaaykW7caGG7bGccaWGObWaaSbaaSqaaiaad2ga cqGHSaalcaWGUbaabeaakiaacogacaGGVbGaai4CaiaacUfacqaHap aCcaWGMbGaaiikaiaad2eacqGHsislcaaIYaGaamyBaiabgkHiTiaa igdacaGGPaGaamivamaaBaaaleaacaWGYbaabeaakiaac2fadaaeWb qaaaWcbaaabaaaniabggHiLdaakeaacqGHxdaTcaGGJbGaai4Baiaa cohacaGGBbGaeqiWdaNaamOzaiaacIcacaWGobGaeyOeI0IaaGOmai aad6gacqGHsislcaaIXaGaaiykaiaacohacaGGPbGaaiOBaiaacIca cqaH4oqCcaGGPaGaamivamaaBaaaleaacaWGYbaabeaakiaac2fani aac2haaaaa@8304@       (13)

When M and N are odd numbers,



P(f,θ)= n=0 (N1)/2 m=0 (M1)/2 { h m,n cos[πf(M2m1) T r ] ×cos[πf(N2n1)sin(θ) T r ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamiuai aacIcacaWGMbGaeyilaWIaeqiUdeNaaiykaiabg2da9iaaxcW7daae WbqabSqaaiaad6gacqGH9aqpcaaIWaaabaGaaiikaiaad6eacqGHsi slcaaIXaGaaiykaiabg+caViaaikdaa0GaeyyeIuoacaaMc8Ucdaae WbqabSqaaiaad2gacqGH9aqpcaaIWaaabaGaaiikaiaad2eacqGHsi slcaaIXaGaaiykaiabg+caViaaikdaa0GaeyyeIuoacaGG7bGccaWG ObWaaSbaaSqaaiaad2gacqGHSaalcaWGUbaabeaakiaacogacaGGVb Gaai4CaiaacUfacqaHapaCcaWGMbGaaiikaiaad2eacqGHsislcaaI YaGaamyBaiabgkHiTiaaigdacaGGPaGaamivamaaBaaaleaacaWGYb aabeaakiaac2faaeaacqGHxdaTcaGGJbGaai4BaiaacohacaGGBbGa eqiWdaNaamOzaiaacIcacaWGobGaeyOeI0IaaGOmaiaad6gacqGHsi slcaaIXaGaaiykaiaacohacaGGPbGaaiOBaiaacIcacqaH4oqCcaGG PaGaamivamaaBaaaleaacaWGYbaabeaakiaac2faniaac2haaaaa@81DF@      (14)

Let F(sinθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa Gaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaaaa@3C7A@ be the desired frequency invariant pattern at angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@3780@ , which is usually given by applications. The optimisation problem is to find { h m,n } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4EaiaadI gadaWgaaWcbaGaamyBaiabgYcaSiaad6gaaeqaaOGaaiyFaaaa@3BE3@ such that P(f,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiabgYcaSiabeI7aXjaacMcaaaa@3B7D@ approximates F(θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaeqiUdeNaaiykaaaa@39A4@ over the working frequency band [ f l , f u ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacUfacaWGMb WaaSbaaSqaaiaadYgaaeqaaOGaeyilaWIaamOzamaaBaaaleaacaWG 1baabeaakiaac2faaaa@3C9B@ . At the same time, to improve the robustness of wideband beamformer against random errors, we need to constrain the norm of hm,n under some known level δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@376F@ . D. P. Scholnik and J. O. Coleman9 firstly introduced this constraint to avoid a large noise gain. One can get more details in this reference. Therefore, the optimisation problem can be formulated as



mi n h P(f,θ)F(sinθ) 2 2 ,f[ f l , f u ] s.t. h 2 δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabeqaciaaae aacaWGTbGaamyAaiaad6gadaWgaaWcbaGaaCiAaaqabaGccaaMd8oa baWaauWaaeaacaWGqbGaaiikaiaadAgacqGHSaalcqaH4oqCcaGGPa GaeyOeI0IaamOraiaacIcacaGGZbGaaiyAaiaac6gacqaH4oqCcaGG PaaacaGLjWUaayPcSdWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey ilaWIaaG5aVlaayoW7caWGMbGaeyicI4Saai4waiaadAgadaWgaaWc baGaamiBaaqabaGccqGHSaalcaWGMbWaaSbaaSqaaiaadwhaaeqaaO GaaiyxaaqaaiaadohacqGHUaGlcaWG0bGaeyOla4IaaG5aVdqaamaa fmaabaGaaCiAaaGaayzcSlaawQa7amaaBaaaleaacaaIYaaabeaaki abgsMiJkabes7aKbaaaaa@6872@      (15)

where . 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaafmaabaGaey Ola4cacaGLjWUaayPcSdWaaSbaaSqaaiaaikdaaeqaaaaa@3AC1@ is the Euclidean norm.
By discretizing the frequency band and angle range with a finite number of samples f k ,k=0,1...,K1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4AaaqabaGccqGHSaalcaWGRbGaeyypa0JaaGimaiabgYca SiaaigdacqGHUaGlcqGHUaGlcqGHUaGlcqGHSaalcaWGlbGaeyOeI0 IaaGymaaaa@4322@ and θ l ,l=0,1,...,L1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGSbaabeaakiabgYcaSiaadYgacqGH9aqpcaaIWaGaeyil aWIaaGymaiabgYcaSiabg6caUiabg6caUiabg6caUiabgYcaSiaadY eacqGHsislcaaIXaaaaa@44D3@ the problem (15) can be reformulated as


mi n h AhF 2 2 s.t. h 2 δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabeqaciaaae aacaWGTbGaamyAaiaad6gadaWgaaWcbaGaaCiAaaqabaGccaaMd8Ua aG5aVdqaamaafmaabaGaaCyqaiaahIgacqGHsislcaWHgbaacaGLjW UaayPcSdWaa0baaSqaaiaaikdaaeaacaaIYaaaaaqaaOGaam4Caiab g6caUiaadshacqGHUaGlcaaMd8UaaG5aVdqaamaafmaabaGaaCiAaa GaayzcSlaawQa7amaaBaaaleaacaaIYaaabeaakiabgsMiJkabes7a Kbaaaaa@5475@      (16)

where
{ [A] l+kL,m+nM =cos[π f k (M2m1) T r ] ×cos[π f k (N2n1)sin θ l T r ] [F] l+kL =F(sin θ l ) [h] m+nM = h m,n k=0,1,...,K1;l=0,1,...,L1 m=0,1,..., M/21 ;n=0,1,..., N/21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaGGBbGaaCyqaiaac2fadaWgaaWcbaGaamiBaiabgUcaRiaadUga caWGmbGaeyilaWIaamyBaiabgUcaRiaad6gacaWGnbaabeaakiabg2 da9iaacogacaGGVbGaai4CaiaacUfacqaHapaCcaWGMbWaaSbaaSqa aiaadUgaaeqaaOGaaiikaiaad2eacqGHsislcaaIYaGaamyBaiabgk HiTiaaigdacaGGPaGaamivamaaBaaaleaacaWGYbaabeaakiaac2fa aeaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlabgEna0kaacogaca GGVbGaai4CaiaacUfacqaHapaCcaWGMbWaaSbaaSqaaiaadUgaaeqa aOGaaiikaiaad6eacqGHsislcaaIYaGaamOBaiabgkHiTiaaigdaca GGPaGaai4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaaiaadYgaaeqa aOGaeyyXICTaamivamaaBaaaleaacaWGYbaabeaakiaac2faaeaaca GGBbGaaCOraiaac2fadaWgaaWcbaGaamiBaiabgUcaRiaadUgacaWG mbaabeaakiabg2da9iaadAeacaGGOaGaai4CaiaacMgacaGGUbGaeq iUde3aaSbaaSqaaiaadYgaaeqaaOGaaiykaaqaaiaacUfacaWHObGa aiyxamaaBaaaleaacaWGTbGaey4kaSIaamOBaiaad2eaaeqaaOGaey ypa0JaamiAamaaBaaaleaacaWGTbGaeyilaWIaamOBaaqabaaabaGc caWGRbGaeyypa0JaaGimaiabgYcaSiaaigdacqGHSaalcqGHUaGlcq GHUaGlcqGHUaGlcqGHSaalcaWGlbGaeyOeI0IaaGymaiabgUda7iaa dYgacqGH9aqpcaaIWaGaeyilaWIaaGymaiabgYcaSiabg6caUiabg6 caUiabg6caUiabgYcaSiaadYeacqGHsislcaaIXaaabaGaamyBaiab g2da9iaaicdacqGHSaalcaaIXaGaeyilaWIaeyOla4IaeyOla4Iaey Ola4IaeyilaWYaayWaaeaacaWGnbGaey4la8IaaGOmaiabgkHiTiaa igdaaiaawcp+caGL7JpacqGH7aWocaWGUbGaeyypa0JaaGimaiabgY caSiaaigdacqGHSaalcqGHUaGlcqGHUaGlcqGHUaGlcqGHSaaldaGb daqaaiaad6eacqGHVaWlcaaIYaGaeyOeI0IaaGymaaGaayj84laawU p+aaaacaGL7baaaaa@CD97@      

By introducing a new non-negative variable λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@377E@ Eqn (16) can be converted to an equivalent optimisation without constraints as


min h ( AhF 2 2 +λ h 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaxababaGaam yBaiaadMgacaWGUbaaleaacaWHObaabeaakmaabmaabaWaauWaaeaa caWHbbGaaCiAaiabgkHiTiaahAeaaiaawMa7caGLkWoadaqhaaWcba GaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH7oaBdaqbdaqaaiaahIga aiaawMa7caGLkWoadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawI cacaGLPaaaaaa@4C03@      (17)

Let L(h)= AhF 2 2 +λ h 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeacaGGOa GaaCiAaiaacMcacqGH9aqpdaqbdaqaaiaahgeacaWHObGaeyOeI0Ia aCOraaGaayzcSlaawQa7amaaDaaaleaacaaIYaaabaGaaGOmaaaaki abgUcaRiabeU7aSnaafmaabaGaaCiAaaGaayzcSlaawQa7amaaDaaa leaacaaIYaaabaGaaGOmaaaaaaa@4A8A@ The gradient of L(h) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeacaGGOa GaaCiAaiaacMcaaaa@38E4@ is given by
L(h) h =2 A T ( AhF )+2λh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamitaiaacIcacaWHObGaaiykaaqaaiabgkGi2kaahIgaaaGa eyypa0JaaGOmaiaahgeadaahaaWcbeqaaiaadsfaaaGcdaqadaqaai aahgeacaWHObGaeyOeI0IaaCOraaGaayjkaiaawMcaaiabgUcaRiaa ikdacqaH7oaBcaWHObaaaa@4990@

where T denotes the transpose operator. Let L(h) h =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamitaiaacIcacaWHObGaaiykaaqaaiabgkGi2kaahIgaaaGa eyypa0JaaGimaaaa@3E71@ and it yields

h= ( A T A+λI) 1 A T F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaahIgacqGH9a qpcaGGOaGaaCyqamaaCaaabeWcbaGaamivaaaakiaahgeacqGHRaWk cqaH7oaBcaWHjbGaaiykamaaCaaabeWcbaGaeyOeI0IaaGymaaaaki aahgeadaahaaqabSqaaiaadsfaaaGccaWHgbaaaa@43AD@      (18)

which is also known as the least mean square (LMS) solution.

Simulations are performed to show the effectiveness of the proposed method. The frequency range of interest is set to be 1<f3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaigdacqGH8a apcaWGMbGaeyizImQaaG4maaaa@3AE6@ GHz. The uniformed linear array has N=21 elements with an adjacent element spacing d= λ min /2=c/(2 f u )=5cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacqGH9a qpcqaH7oaBdaWgaaWcbaGaamyBaiaadMgacaWGUbaabeaakiabg+ca ViaaikdacqGH9aqpcaWGJbGaey4la8IaaiikaiaaikdacaWGMbWaaS baaSqaaiaadwhaaeqaaOGaaiykaiabg2da9iaaiwdacaWGJbGaamyB aaaa@48C3@ . The desired beam pattern is set to be the response for a narrow-band signal with frequency 1.5 GHz and using Taylor weights of -30 dB sidelobes. The Taylor weights15 can provide a near optimum beamwidth for a given peak-sidelobe level. The expression of the desired beam pattern is given by



F(sinθ) = n=10 10 w n e j2πnfdsinθ/c = n=10 10 w n e jπnf/ f u sinθ = n=10 10 w n e jπnsinθ/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabeqadiaaae aacaWGgbGaaiikaiaacohacaGGPbGaaiOBaiabeI7aXjaacMcaaeaa cqGH9aqpdaaeWbqabSqaaiaad6gacqGH9aqpcqGHsislcaaIXaGaaG imaaqaaiaaigdacaaIWaaaniabggHiLdGaaGPaVRGaam4DamaaBaaa leaacaWGUbaabeaakiaadwgadaahaaqabSqaaiabgkHiTiaadQgaca aIYaGaeqiWdaNaamOBaiaadAgacaWGKbGaai4CaiaacMgacaGGUbGa eqiUdeNaey4la8Iaam4yaaaaaeaaaeaakiabg2da9maaqahabeWcba GaamOBaiabg2da9iabgkHiTiaaigdacaaIWaaabaGaaGymaiaaicda a0GaeyyeIuoacaaMc8UccaWG3bWaaSbaaSqaaiaad6gaaeqaaOGaam yzamaaCaaabeWcbaGaeyOeI0IaamOAaiabec8aWjaad6gacaWGMbGa ey4la8IaamOzamaaBaaameaacaWG1baabeaaliaacohacaGGPbGaai OBaiabeI7aXbaaaeaaaeaakiabg2da9maaqahabeWcbaGaamOBaiab g2da9iabgkHiTiaaigdacaaIWaaabaGaaGymaiaaicdaa0GaeyyeIu oacaaMc8UccaWG3bWaaSbaaSqaaiaad6gaaeqaaOGaamyzamaaCaaa beWcbaGaeyOeI0IaamOAaiabec8aWjaad6gacaGGZbGaaiyAaiaac6 gacqaH4oqCcqGHVaWlcaaIYaaaaaaaaaa@8BA0@       (19)

,

where wn are Taylor weights of –30 dB sidelobes, which can be computed approximately by the following formula



{ B = 0.9067 (R+9.7) 2 / (13.26+9.7) 2 1 w n = Besseli( 0,πB 1 (2n/ N ˜ 1) 2 /2π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiWaaaqaaiaadkeaaeaacqGH9aqpaeaacaaIWaGaeyOla4IaaGyo aiaaicdacaaI2aGaaG4namaakaaabaGaaiikaiaadkfacqGHRaWkca aI5aGaeyOla4IaaG4naiaacMcadaahaaqabSqaaiaaikdaaaGccaGG VaGaaiikaiaaigdacaaIZaGaeyOla4IaaGOmaiaaiAdacqGHRaWkca aI5aGaeyOla4IaaG4naiaacMcadaahaaqabSqaaiaaikdaaaGccqGH sislcaaIXaaaleqaaaqaaOGaam4DamaaBaaaleaacaWGUbaabeaaae aakiabg2da9aqaaiaadkeacaWGLbGaam4CaiaadohacaWGLbGaamiB aiaadMgadaqadaqaaiaaicdacqGHSaalcqaHapaCcaWGcbWaaOaaae aacaaIXaGaeyOeI0IaaiikaiaaikdacaWGUbGaey4la8IabmOtayaa iaGaeyOeI0IaaGymaiaacMcadaahaaqabSqaaiaaikdaaaGccaGGVa GaaGOmaiabec8aWbWcbeaaaOGaayjkaiaawMcaaaaaaiaawUhaaaaa @6B72@       (20)

,

where R=30, N ˜ =N1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqad6eagaacai abg2da9iaad6eacqGHsislcaaIXaaaaa@3A2D@ . The desired beam pattern is shown in Fig 2..

Fig 2. Desired beam pattern with Taylor weights

After discretizing the angle interval [0°,180°] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacUfacaaIWa GaeyiSaaRaeyilaWIaaGymaiaaiIdacaaIWaGaeyiSaaRaaiyxaaaa @3F37@ and the frequency band GHz into uniform grids, 100 angle samples θ 1 , θ 2 ,..., θ 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabgYcaSiabeI7aXnaaBaaaleaacaaIYaaa beaakiabgYcaSiabg6caUiabg6caUiabg6caUiabgYcaSiabeI7aXn aaBaaaleaacaaIXaGaaGimaiaaicdaaeqaaaaa@448E@ and 100 frequency points f 1 , f 2 ,..., f 100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGccqGHSaalcaWGMbWaaSbaaSqaaiaaikdaaeqa aOGaeyilaWIaeyOla4IaeyOla4IaeyOla4IaeyilaWIaamOzamaaBa aaleaacaaIXaGaaGimaiaaicdaaeqaaaaa@422D@ are obtained to form the matrix A and the desired pattern F. The robust parameter is set to be 0.1. Using the formula (18), we get the impulse responses of FIR filters. The frequency magnitude of H 1 (f), H 2 (f),, H 21 (f) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaaGymaaqabaGccaGGOaGaamOzaiaacMcacaGGSaGaamisamaa BaaaleaacaaIYaaabeaakiaacIcacaWGMbGaaiykaiaacYcacqWIVl ctcaGGSaGaamisamaaBaaaleaacaaIYaGaaGymaaqabaGccaGGOaGa amOzaiaacMcaaaa@468B@ are given in Fig 3.


Figure 2. Desired beam pattern with Taylor weights.


Figure 3. Frequency magnitude of FIR filters.


Fig 3. Frequency magnitude of FIR filters

The achieved wideband beam pattern is shown in Fig 4.

Fig 4. Resultant wideband beam pattern

The beam pattern has a clear frequency invariant property which shows the effectiveness of the proposed beamforming method. One can set the robust parameter δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@376F@ to be other values other than 0.1. With a smaller δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@376F@ , the resulting frequency invariant beam pattern can approximate the desired pattern better. But it will be more sensitive to random noise. On the other hand, if δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabes7aKbaa@376F@ is larger, the resulting beam pattern will be more robust.


Figure 4. Resultant wideband beam pattern.


In this article, we proposed a new wideband beamformer with frequency invariant property by optimizing the coefficients of real and symmetric FIR filters. The lower bound of filter length is given by applying the Landau-Pollak theorem to the received wideband signals. The filter coefficients are solved by the LMS algorithm. The proposed method can also be generalized to sparse linear array, two or three dimensional arrays easily.

1. Van Trees, H.L. Optimum array processing, Pt IV Detection, estimation, and modulation theory. Wiley, New York, 2002. 1443 p.

2. Liu, W. & Weiss, S. Wideband beamforming: Concepts and techniques. John Wiley & Sons, Chichester, United Kingdom, 2010. 302 p.

3. Nordholm, S.E.; Claesson, I. & Grbic, N. Performance limits in subband beamforming. IEEE Trans. Speech Audio Processing, 2003, 11(3), 193-203.

4. Chandran. S. Scheme for subband adaptive beamforming array implementation using quadrature mirror filter banks. Electronics Letters, 2003, 39(12), 891-92.

5. Liu, W. & Langley, R.J.  An adaptive wideband beamforming structure with combined subband decomposition. IEEE Trans. Antenna Propagation, 2009, 57(7), 2204-207.

6. Haykin, S. & Kesler, J. Relation between the radiation pattern of an array and the two-dimensional discrete Fourier transform. IEEE Trans. Antennas Propagation, 1975, 23(3), 419-20.

7. Wei, L. & Weiss, S. Design of frequency invariant beamformers for broadband arrays. IEEE Trans. Signal Processing, 2008, 56(2), 855-60.

8. Wei, L.; McLernon, D.C. & Ghogho, M. Design of frequency invariant beamformers without temporal filtering. IEEE Trans. Signal Processing, 2009, 57(2), 798-802.

9. Scholnik, D.P. & Coleman, J.O. Formulating wideband array-pattern optimisations. In Proceedings of IEEE International Conference Phased Array Systems Technology, Dana Point, CA, 2000. pp. 489-492.

10. Yan, S.F. & Ma, Y.L. Design of FIR beamformer with frequency invariant patterns via jointly optimising spatial and frequency response. In Proceedings of the IEEE International Conference Acoustics, Speech, Signal Processing, Philadelphia, PA, 2005. pp. 789-792.

11. Yu, Z.L.; Ser, W.; Dr, M.H.; Gu, Z.H.  & Li Y. Q. Robust adaptive beamformers based on worst-case optimisation and constraints on magnitude response. IEEE Trans. Signal Processing, 2009, 57(7), 2615-628.

12. Klemm, R. Principles of space-time adaptive processing. institute of electrical engineers. London, United Kingdom, 2002. 672 p.

13. Landau, H.J.  & Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty–III: the dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J., 1962, 41, 1295-336.

14. Zhang, Q. & Mikhael, W.B. Estimation of the clutter rank in the case of subarray for space-time adaptive processing. Electronics Letters, 1997, 33(5), 419-20.

15. Taylor, T.T. Design of line-source antennas for narrow beamwidths and low sidelobes. IRE Trans. Antennas Propagation, 1955, AP-3, 16-28.

Mr Zhang Weicheng received his BSc (Communication) from the Beihang University, China in 2004 and MSc(Computer Applications) from Chinese Academy of Sciences in 2007. Presently, he is pursuing his PhD at National University of Defense Techonolgy, China. His research interests include: information acquisition and circuit realisation.

Mr Chen Zengping is presently working as a professor in ATR Key Laboratory at National University of Defense Technology. He is also the vice-director of ATR Key Laboratory. His research interests include: Radar targets recognition, information acquisition and processing techniques., AP-3, 16-28.