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Abstract
As a kind of complex targets, the nonrigid vibration of an aircraft as well as its attitude change and the rotation of its rotating parts will induce complex nonlinear modulation on its echo from low-resolution radars. If one performs the fractal analysis of measures on an aircraft echo, it may offer a fine description of the dynamic characteristics which induce the echo structure. On basis of introducing self-affine fractal theory, the paper models real recorded aircraft echo data from a low-resolution radar using the self affine fractal representation, and investigates the application of echo self-affine fractal characteristics in aircraft target classification. The analysis results show that aircraft echoes from low-resolution radars can be modeled by using the self-affine fractal method, and the self-affine fractal features can be effectively applied to target classification and recognition.
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1.  Introduction

Aircraft is a kind of nonrigid targets with complex shapes. The nonrigid vibration or attitude change of aircraft relative to the observation radar will induce complicated nonlinear modulations on the echo amplitude and its phase1. In addition, the jet engine modulation (JEM) induced by the rotation of the aircraft rotating parts, such as the rotor, empennage, propeller, turbine fan, etc., is also a typical nonlinear modulation, which embodies in the echo characteristics, such as amplitude, phase, frequency, and polarization1-3. These kinds of nonlinear modulations reflect the complicated micro-motion modulation effects of various parts of aircraft and contain target attribute information, such as the geometric structure, material composition, etc.4-5. Different types of aircraft targets generally have different structure and rotating parts, and often have different nonrigid vibration and JEM characteristics. So if these nonlinear modulation signatures which reflect the physical characteristics of an aircraft target can be extracted effectively, then one may apply them to target classification and recognition directly6-7.
So far, some scholars have proposed several theoretical models for aircraft echoes from low-resolution radars8-12. However, due to the complexity of the nonlinear modulation induced by the nonrigid vibration or attitude change, most models have paid more attention to the modeling of the JEM echo section, and simplified the modeling of the airframe echo section; so in some cases they are unsatisfactory in analyzing the nonlinear modulation characteristics of aircraft echoes from low-resolution radars. In recent years, some fractal geometry methods, such as mono-fractal, fuzzy fractal, multifractal, etc., have been introduced into the characteristic analysis of aircraft echoes from low-resolution radars6-7, 13-15. However, it has not been reported that self-affine fractal theory has been applied to the modeling of real-recorded aircraft echo data from low-resolution radars so far. Therefore, the paper plans to take self-affine fractal theory as the tool to model aircraft echoes from low-resolution radars. On basis of introducing self-affine fractal theory, the text models aircraft echoes from low-resolution radars by using the self-affine fractal representation method16, analyzes their self-affine fractal characteristics, and investigates the application of echo multifractal signatures in aircraft target classification.
2.  The theoretical basis of self-affine fractal and its representation
2.1 The theoretical basis of self-affine fractal
Iterated Function System17 (IFS) theory is a powerful mathematical tool for the research of self-affine fractal, which is built on the basis of the compression mapping. Firstly, the definitions related to compression mapping are given as follows18.
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[image: image1.wmf](

)

,

d

X

 be a metric space and 
[image: image2.wmf]w

 be a mapping of
[image: image3.wmf]®

XX

. If there exists a positive constant, forming
[image: image4.wmf](

)

(

)

(

)

(

)

,,

dxycdxy

ww

£×

,
[image: image5.wmf],

xy

"Î

X

, then 
[image: image6.wmf]w

 is called a compression mapping, and c is its compression factor.
Definition 2: A hyperbolic IFS is composed of a complete metric space 
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If a time series is known, then one can construct an IFS and make its attractor approximate a specified sequence to model the series. Research on the attractor is usually carried out in the Hausdorff metric space. One can map the series to the corresponding local through each of the self-affine transform of the IFS and piece these local fragments together, and then the error of the new series with the original series describes the degree of similarity between the attractor generated by the IFS and the original series. The smaller is the error, the higher is the degree of similarity between the two. For the error with the original series, the following collage theorem gives a metric method.
Collage theorem19: Let 
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2.2 Representation of self-affine fractal
In the last section we described the theoretical basis of self-affine fractal for modeling a time series, below we further discuss the realization of self-affine fractal20. Consider a linear affine mapping of point 
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where a, c, d, e and f are the mapping parameters, t is the time, and x is the amplitude of the signal. The mapping in Equation (2) is called shear transformation; this is because it has different scaling in the horizontal and vertical direction. The parameter d is called the compression factor of the mapping, and
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According to equation (3), a, c, e and f can be calculated by the compression factor d and the corresponding boundary values, which can be expressed as
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Assume that t0 ≤ tp ≤ tq ≤ tf, then the compression factor d can be obtained by the analytic technique given by Literature [20]. Obviously, the affine mapping 
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 is completely determined by the compression factor d and the subinterval boundary condition. In practice, the signal is often a discrete time series. When 
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 compresses the whole series to a series subset according to the proportion, the number of sampling points will not be consistent before and after mapping. If assuming that the discrete series is
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with p ≤ m ≤ q. Here, the symbol 
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 denotes the image of xn in the m position. Attention is required, here m is not necessarily an integer. The optimal compression factor d for the mapping should make the mean square error (MSE) between the mapping value and the measured value smallest, and the error function21 is
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Obviously, in the subinterval, the mapping points is N, while the measuring point has only q - p + 1. In Equation (9), 
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represents the nearest integer). The method is used to overcome the inconsistency of the sampling points before and after mapping. The minimum variance estimator for the compression factor d is20
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with
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3.  Self-affine fractal modeling of aircraft echoes
3.1 Self-affine modeling of a signal
Consider a discrete time series
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, which can be divided into M overlapping subintervals with δ and φ as their sizes, there into, δ denotes the number of points in the subinterval, and φ denotes the overlapping points of two adjacent subintervals. Due to self-similarity, each subinterval is the replication of the whole series by shrinking proportionally and rotating corresponding to the compression factor. Segmenting data according to this method, we can get M contraction factors 
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. The evolution process of the contraction factor can be modeled as a P-th order AR process21, i.e.
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where 
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 are AR model coefficients. P can be selected by Akaike’s Information Criterion (AIC) 22. Then the (M+1)-th contraction factor can be estimated as
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As can be known from Equations (4) ~ (7), the mapping is completely determined by the two boundary values and the contraction factor. The estimator 
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 of dM+1 can be obtained by Equation (14). Because the data overlap, the right boundary can be estimated by the minimum mean square error between the estimation value and the actual value of the overlapping part of the (M+1)-th subinterval. And then it can be used to predict the values of
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3.2 Echo modeling results based on self-affine fractal

The echo data used in the text are recorded from a surveillance radar, and they are from two different types of aircraft targets with the one fighter aircraft and the other civil aircraft. There into, the radar operates in the VHF band with its PRF 100 Hz and pulse width 25 μs, and the flight attitude of both types of aircraft targets contains two kinds: towards the radar station and off the radar station. Fig. 1 (a) and (b) show the self-affine fractal modeling results of a group of a normalized echo data from both types of aircraft targets when fly off the radar station. Among them, the echo data points N equals to 1024, the number of points in a subinterval δ equals to 32, and the number of overlapping data points φ equal to δ/2. Fig. 2 presents the relationship curves of the mean square modeling error Ex of these two groups of echo data with δ, and the number of overlapping data points φ are also δ/2.
[image: image65.png]--= frue value

~_predicted value

800

=i,

400

200

......

600

1000

0.010




(a) Civil aircraft
[image: image66.png]0.07

—mee true value
— predlcted value

=
o
o

amplitude
o
o
(&)}

o
o
&

0.03





(b) Fighter aircraft
Figure 1. Self-affine fractal modeling of echo data from two types of aircraft targets
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Figure 2. The relationship curves of the mean square modeling error Ex with the number of points in a subinterval δ
It can be seen from Fig. 1, the self-affine fractal model can track the change trend of echo data from the two types of aircraft targets effectively, and therefore it can model them effectively. As can be seen from Fig. 2, the mean square modeling errors of echo data from the two types of aircraft targets increase with the increase of δ, but with the further increase of δ, both them grow more and more slowly and gradually stabilize. Comprehensively considering the factors such as computation, 128 is selected as the number of points in a subinterval, i.e., δ = 128, and φ is still taken as δ/2.
Fig. 3 shows the distributing circumstances of the 2-D signatures composed of the mean square modeling error Ex and the model order P of the AR process of the contraction factor d of echo data from both types of aircraft targets, with “☆” and “o” denoting the fighter aircraft and the civil aircraft respectively. Among them, the group numbers of echo data from both types of aircraft are all 2560, with the echo group numbers for each flight attitude 1280. It can be seen from the figure, although there are some overlaps between the 2-D signatures of both types of aircraft targets, as a whole, the signatures belonging to different types of aircraft separate from each other distinctly. Therefore, if combining the two characteristic parameters together to identify different types of aircraft targets, it is hopeful to obtain a better performance.
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Figure 3. Distributing circumstances of 2-D signatures composed of Ex and P of echo data from both types of aircraft

4.  Aircraft target classification based on self-affine fractal signatures
The previous section shows that the self-affine fractal method can model an aircraft echo from low-resolution radar effectively. As pointed out in the introduction, echo data from different types of aircraft targets often have different nonlinear characteristics, and thus they certainly will appear different self-affine fractal signatures. Therefore, it provides a probability for aircraft target classification and recognition with low-resolution radars. Based on the foregoing real recorded aircraft echo data, below the paper will investigate the application of self-affine fractal signatures in aircraft target classification with low-resolution radars.

Due to complexities of the actual target state and the environment, the target attitude, distance, background, etc. often change, which makes the raw target echo data can not be directly used for feature analysis and extraction, and therefore one must do some data preprocessing to reduce the influence of these factors. Here the following two kinds of preprocessing will mainly be done: one is attitude partition, the other is energy normalization. The specific method can be found in Literature 23.
Based on the difference between the distributing circumstances of the 2-D signatures of echo data from both types of aircraft targets shown by Fig. 3, here Ex and P are chosen as the characteristic parameters for target classification. Compared to other classifiers, support vector machine (SVM) has stronger generalization abilities and a faster convergence rate24, so in the experiment SVM using the Gaussian kernel function is taken as the classifier, and the kernel function parameters are selected rationally without going beyond the calculation burden.
Tab. 1 shows the classification results of the two types of aircraft targets, and as a contrast, the results using the raw echo data without performing any preprocessing are also presented. Among them, the group numbers of echo data from both types of aircraft targets are the same as those in Fig. 3, and for each type of aircraft targets, the signature data extracted from 512 groups of echo data are chosen as training samples (the group numbers for each of the two flight attitudes useful for classification are 256), with the rest signature data as testing samples. As can be seen from Tab. 1, the average correct classification rate (CCR) is more than 91 percent, and the data preprocessing obtains a classification gain more than two percentage points. Therefore the classification effect is satisfactory. What should be pointed out is that the signature dimension reduction processing has been done in the classification experiment. If the whole signatures such as the AR model parameters of the contraction factor d are made full use of, the average CCR could still have an increase to a certain extent.
Table 1.  Classification results

	
	Using raw echo data
	Using preprocessed echo data

	Fighter aircraft
	86.86%
	91.77%

	Civil aircraft
	90.89%
	90.48%

	Average CCR
	88.77%
	91.11%


5.  Conclusions
Based on the complex nonlinear modulation characteristics induced by the nonrigid vibration and attitude change of aircraft targets along with the JEM effect, the paper models aircraft echoes from low-resolution radars from the viewpoint of self-affine fractal. On basis of introducing self-affine fractal theory, it models the real recorded aircraft echo data from low-resolution radars by using the self-affine fractal representation, and investigates the application of aircraft echo self-affine fractal signatures in target classification with low-resolution radars. The experimental results show that:

(i) It is an effective method to model aircraft echoes from low-resolution radar using a self-affine fractal model; 
(ii) If one performs the self-affine fractal analysis of measures on an aircraft echo, it is hopeful to reveal its internal dynamics evolution mechanism;
(iii) Self-affine fractal characteristic parameters of aircraft echoes can be used as effective signatures for aircraft target classification with low-resolution radars.
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