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NOMENCLATURE
ax, ay, az   Accelerations along x, y and z body axes, m/s2

CD, CL	 	 Coefficients	of	drag	and	lift	force,	respectively

0 0
,D LC C 	 	 Coefficients	 of	 drag	 and	 lift	 force	 at	 zero	 angle	 of	

attack
Cm  Coefficients	of	pitching	moment
c 	 	 Mean	aerodynamic	chord,	m
g	 	 Acceleration	due	to	gravity,	m/s2 

Iy  Moment of inertia about y axis, kg-m2

J   Cost function
k  Induced drag correction factor
m  Aircraft mass, kg
q  Pitch	rate,	rad/s
s  Wing plan form area, m2

u,v, w	 	 Airspeed	components	along	x,	y	and	z	axis	of	aircraft,	
m/s

V  Airspeed, m/s
α,	β   Angle of attack and Angle of slide slip, deg

, ,a e rδ δ δ 			 Aileron,	elevator	and	rudder	deflection	angles,	deg
ϕ,	θ,	ψ	 	 Angles	of	roll,	pitch	and	yaw,	deg
ρ	 	 Density,	kg/m3

Θ		 	 	 													Vectors	of	unknown	parameters
*

1 2, , , ,
X XD ma C Ca τ 					Stall	characteristic	parameters

1. INTRODUCTION
Parameter	estimation	from	flight	data	constitutes	a	major	

subroutine	 of	 system	 identification	 process.	 The	 estimation	
process	 quantifies	 the	 unknown	model	 parameters	 in	 a	 pre-
decided	model	structure	of	 the	system.	This	process	requires	
the	 input	 of	 observed	 variables	 that	 depicts	 the	 actual	 state	
of	the	system	at	a	particular	instant.	Indeed	in	a	deterministic	
system	 these	 measured	 variables	 are	 assumed	 to	 be	 noisy/
random	and	 the	unknown	parametric	vector	 is	 constant.	The	
parameters	in	the	assumed	mathematical	model	are	estimated	
by	 minimising	 the	 error	 between	 computed	 response	 and	
measured	 variables.	 Although	 various	 numerical	 estimators	
are	available,	 identifying	 the	appropriate	methods	which	can	
efficiently	handle	the	measurement	noise	is	crucial	in	accurate	
estimation	of	the	parameters.	

For	 more	 than	 three	 decades,	 the	 maximum	 likelihood	
(MLE)	parameter	estimators	have	been	successfully	applied	to	
the	flight	 data	 for	 estimation	of	 aircraft	 stability	 and	 control	
derivatives.	The	application	of	MLE	estimators	to	flight	data	
with	 either	 the	measurement	 noise	 or	 the	 process	 noise	 has	
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ABSTRACT

The	current	research	paper	is	an	endeavour	to	estimate	the	parameters	from	near	stall	flight	data	of	manned	and	
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the	aerodynamic	model	at	these	high	angles	of	attack	becomes	non	linear	due	to	the	influence	of	unsteady,	transient	
and	flow	separation	phenomena.	In	order	 to	address	 these	 issues	 the	Kirchhoff’s	flow	separation	 theory	was	used	
to	incorporate	the	nonlinearity	in	the	aerodynamic	model	in	terms	of	flow	separation	point	and	stall	characteristic	
parameters.	The	 classical	Maximum	Likelihood	 (MLE)	method	 and	Neural	Gauss-Newton	 (NGN)	method	have	
been	 employed	 to	 estimate	 the	 nonlinear	 parameters	 of	 two	manned	 and	 one	 unmanned	 research	 aircrafts.	The	
estimated	static	 stall	parameter	and	 the	break	point,	 for	 the	flight	vehicles	under	consideration,	were	observed	 to	
be	 consistent	 from	both	 the	methods.	Moreover	 the	 efficacy	 of	 the	methods	 is	 also	 evident	 from	 the	 consistent	
estimates	 of	 post	 stall	 hysteresis	 time	 constant.	 It	 can	 also	 be	 inferred	 that	 the	 considered	quasi	 steady	model	 is	
able	 to	 adequately	 capture	 the	drag	and	pitching	moment	 coefficients	 in	 the	post	 stall	 regime.	The	confidence	 in	
these	estimates	have	been	significantly	enhanced	with	 the	observed	 lower	values	of	Cramer-Rao	bounds.	Further	
the	estimated	nonlinear	parameters	were	validated	by	performing	a	proof	of	match	exercise	for	the	considered	flight	
vehicles.	Interestingly	the	NGN	method,	which	doesn’t	 involve	solving	equations	of	motion,	was	able	to	perform	
on	a	par	with	the	MLE	method.
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been	accepted	as	a	standard	approach	for	parameter	estimation.	
However,	 in	 the	presence	of	both	 (measurement	and	process	
noise)	the	MLE	estimator	might	lead	to	convergence	problems	
and	other	practical	difficulties.	In	recent	times,	the	applicability	
of	 the	 output	 error	 method	 has	 also	 been	 extended	 to	 the	
general non-linear systems1.	The	main	advantage	of	the	MLE	
method	 is	 that	 the	 estimates	 are	 asymptotically	 unbiased,	
consistent	and	efficient.	The	method	also	provides	a	measure	
of	accuracy	in	 terms	of	 the	Cramer-Rao	bound1,2.	The	newly	
emerging	 Neural-Gauss-Newton	 (NNG)	 method	 was	 also	
stood	promising	in	handling	the	flight	data	with	measurement	
noise3–6.	The	NGN	method	uses	feed	forward	neural	networks	
(FFNN)	 to	 establish	 a	 neural	 model	 that	 could	 be	 used	 to	
predict	subsequent	time	histories,	given	the	suitable	measured	
initial	conditions.	Although	analytical	methods,	computational	
techniques	and	wind	tunnel	measurements	provides	reasonable	
estimates,	parameter	estimation	from	flight	data	will	overcome	
the	limitations	of	the	above	mentioned	conventional	techniques	
and	also	enhances	the	confidence	in	the	estimates.

Introduction	 of	 highly	 manoeuverable,	 unstable,	 high	
performance	 aircraft	 has	 motivated	 researchers	 to	 work	 in	
the	 field	 of	 aerodynamic	 model	 extraction	 using	 flight	 data	
pertaining	 to	 high	 angles	 of	 attack.	 This	 class	 of	 aircraft	
often	operates	at	high	angles	of	attack	(near	stall)	and	hence	
encounters	highly	complex	unsteady	aerodynamics.	Due	to	the	
limited	available	non-linear	aerodynamic	models,	researchers	
face	 serious	 difficulties	 in	 handling	 such	 flight	 data	 for	 the	
purpose	 of	 parameter	 estimation.	Research	 on	 high	 angle	 of	
attack	 flight	 has	 been	 mainly	 focused	 on	 the	 aerodynamic	
modelling	of	manned	fighter	aircrafts.	Many	scholars	carried	
out	detail	research	on	the	non-linear	modelling	of	conventional	
fixed	 wings,	 delta	 wings	 and	 swept	 wings	 from	 various	
perspectives.	 Goman	 and	 Khrabrov7	 have	 developed	 a	 state	
space	 representation	 of	 aerodynamic	 characteristics	 of	 an	
aircraft	at	high	angles	of	attack.	Fischenberg	and	Jategaonkar8 
have	presented	the	quasi	steady	stall	modelling	to	perform	the	
stall modelling of C-160 military transport aircraft and also 
discussed	about	the	parameter	estimation	of	the	aerodynamic	
coefficients	 of	 the	 proposed	 steady	 stall	 model.	 Nelson	 and	
Pelletier9	 have	 used	 the	 non-linear	 indicial	 response	 (NIR)	
method	 to	 represent	 the	 aerodynamic	 functions	 in	 the	 non-
linear	regime	of	F-18	and	X-31	aircraft.	Leishman and Nguyen10  
modelled	 the	 unsteady	 aerodynamic	 behaviour	 of	 the	 airfoil	
using	 state	 space	 representation.	Ghoreyshi	 and	Cummings11 
have	 applied	 time	 depended	 surrogate	method	 to	model	 the	
unsteady	 aerodynamics	 for	 various	 aircraft	 manoeuvers.	
Chowdhary	 and	 Jategaonkar12	 have	 carried	 out	 parameter	
estimation	 from	 flight	 data	 using	 unscented	 Kalman	 filter.	
Kumar13, et al.	 have	 performed	 the	 non-linear	 aerodynamic	
modelling	of	cascade	fins	near	stall	angles	of	attack	for	various	
g/c conditions, using steady state stall model. It is generally 
observed	from	the	contemporary	research	that	the	main	focus	
is	on	non-linear	aerodynamic	modelling	of	fighter	aircrafts	and	
the	flight	vehicles	related	to	military	applications.		The	research	
on	the	high	angle	of	attack	modelling	of	the	unmanned	aerial	
systems	is	currently	taking	higher	attention.

The	static	attached	flow	aerodynamics	can	be	sufficiently	
modelled	 by	 using	 the	 time-invariant	 parameters	 and	 linear	

aerodynamic models1.	But	at	high	angles	of	attack,	apart	from	
data	acquisition,	the	postulation	of	exact	aerodynamic	model	
is	another	challenging	task.	The	present	research	work	uses	the	
Kirchhoff’s	flow	separation	model	 to	perform	 the	non-linear	
aerodynamic	modelling	from	high	angles	of	attack	flight	data1. 
The	present	 research	work	 also	highlights	 the	 application	of	
the	MLE	and	 the	NGN	methods	 for	parameter	 estimation	at	
high	angles	of	attack.	For	this	purpose	three	sets	of	high	angle	
of	attack	flight	data	has	been	used,	one	each	from	two	manned	
and	 one	 unmanned	 aircrafts.	 The	 estimated	 response	 of	 the	
state	 variables,	 using	MLE	 and	NGN	method,	 pertaining	 to	
the	flight	 data	 at	 high	 angles	 of	 attack	 have	 been	 presented.	
The	 obtained	 stall	 characteristic	 parameters	 along	 with	 the	
respective	Cramer-Rao	bounds	from	three	sets	of	compatible	
flight	 data	 have	 been	 tabulated.	 Further,	 the	 comparison	 of	
the	 measured	 and	 estimated	 stall	 hysteresis	 of	 manned	 and	
unmanned	flight	vehicles,	using	MLE	and	NGN	methods,	 is	
also presented. 

2. GENERATION OF FLIGHT DATA
As	mentioned	earlier,	three	sets	of	high	angles	of	attack	

flight	 data	 have	 been	 used	 to	 estimate	 stall	 characteristic	
parameters.	Primarily,	the	first	set	of	high	angle	of	attack	flight	
data,	 pertaining	 to	 longitudinal	 dynamics,	was	 generated	 in-
house	 using	Hansa-3	 aircraft	 available	 at	 Indian	 Institute	 of	
Technology	Kanpur	(IITK).	The	second	set	of	flight	data	was	
obtained	 from	 Ref.	 1.	 This	 set	 off	 light	 data	 was	 generated	
using	ATTAS	aircraft	at	DLR	Germany1.	Finally	the	third	set	is	
obtained	from	an	unmanned	configuration	which	was	designed,	
fabricated	 and	 instrumented	 in-house	 at	 flight	 laboratory	 of	
IITK14.	The	detailed	geometric	and	inertial	characteristics	of	the	
manned	aircrafts,	namely	ATTAS,	and	Hansa-3	are	presented	
in	Ref.	6	and	Ref.	1,	respectively.		

The	designed	unmanned	configuration	has	cropped	delta	
plan	 form	with	 a	 reflex	 airfoil	 cross	 section	 (NACA	23110)	
as	 shown	 in	 Fig.	 1.	 For	 the	 rest	 of	 this	 paper	 the	 designed	
unmanned	configuration	is	termed	as	CDRW.	From	Fig.	1,	it	
can	also	be	noticed	that	CDRW	is	a	wing	alone	blended	wing	
configuration	with	 no	 separate	 horizontal	 tail.	A	 high	 aspect	
ratio	all	moving	vertical	 tail	 serves	 the	purpose	of	 rudder	as	
well	as	vertical	stabiliser	for	CDRW.	The	cross	section	of	this	
vertical	tail	is	NACA	0012,	a	symmetric	airfoil.	The	longitudinal	
and	 lateral	 control	 is	 achieved	with	 the	 help	 of	 the	 elevons	
located	at	the	trailing	edge	of	the	designed	configuration	and	
is	also	presented	 in	Fig.	1(a).	These	elevons	acts	as	elevator	
when	deployed	 together	and	serves	as	elevons	when	applied	
asymmetric	 deflections.	The	 geometric	 characteristics	 of	 the	
current	 unmanned	 configuration	 along	with	Hansa-3	 aircraft	
have	been	presented	in	Table	1.

To	perform	the	parameter	estimation	from	the	flight	data,	
various	motion	variables	have	to	be	recorded	during	the	flight	
tests.	Hence	the	CDRW	configuration	has	been	instrumented	to	
record linear accelerations ( , ,x y za a a ), angular rates ( , , )p q r
, Euler angles ( , , )φ θ ψ ,	velocity	 ( )V∞ ,	flow	angularity	 ( , )a β
and	control	surface	deflections	 ( , , )a e rδ δ δ 	etc.	during	the	flight	
tests.	 Figure	 2	 present	 the	 photograph	 of	 the	 instrumented	
(ready	for	flight)	CDRW	configuration.

The	 data	 acquisition	 system	 is	 equipped	with	 a	 9	DOF	
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Inertial measurement unit (IMu to record , , , , , , , ,x y za a a p q r φ θ ψ 
, , , , , , , ,x y za a a p q r φ θ ψ), differential pressure sensor (to measure V∞ ), GPS 

unit	 etc.	 The	 acquisition	 system	 can	 simultaneously	 record	
five	 analog	 inputs,	 five	 digital	 inputs	 and	 six	 PWM	 signals.	
The	system	is	capable	of	both	onboard	logging	and	telemetry	
to	ground	station.	The	velocity	of	the	flight	has	been	obtained	
with	the	help	of	a	differential	pressure	sensor	attached	to	the	in-	
house	fabricated	mini	Pitot	and	static	tubes.	A	prior	calibration	
of	 this	 pressure	 sensor	 has	 been	 performed	 to	 convert	 the	
obtained	voltage	signal	to	corresponding	velocity	of	flight.	The	
angle of attack and sideslip angles ( , )a β 	were	obtained	from	
an	 in-house	manufactured	 vane	 type	flow	 angularity	 sensors	
mounted	 at	 the	 tip	 chord	 of	 the	 unmanned	 configurations,	
presented	in	Fig.	2.	The	data	acquisition	system	is	embedded	
with	 a	 two	 quad	 core	 ARM	 (Advanced	 RISC	 Machines)	
processors	 capable	 of	 performing	 onboard	 logging	 at	 20	Hz	
and	telemetry	at	11	Hz15,16.	A	dedicated	graphical	user	interface	
(GUI)	has	been	developed	using	lab-view	platform	to	perform	
data	logging	at	the	ground	station.	Flight	data	for	aerodynamic	
characterisation	 studies	 of	 CDRW	 has	 been	 generated	 by	
performing	various	flight	test	manoeuvers	at	flight	laboratory	
in	IITK,	India.

Initially	the	pilot	of	these	remotely	controlled	unmanned	
flight	vehicle	has	trimmed	the	aircraft	at	a	comfortable	altitude	
(usually	 50	m	 to	 70	m)	 from	 the	 ground	 station.	 From	 this	
trim	condition	pre-decided	control	 inputs	were	applied	 in	an	
attempt	 to	 excite	 various	 modes	 of	 flight.	 These	 flight	 tests	
were	performed	during	the	days	with	moderately	calm	weather.	
Further	it	is	assumed	that	there	is	no	significant	effect	of	wind	
on	the	acquired	flight	data.	The	generated	high	angle	of	attack	
flight	 data	 is	 designated	 as	 HNS_STL1	 for	 Hansa-3,	ATS_
STL1	for	ATTAS	and	URW_STL1	for	CDRW	configuration,	
respectively.	 The	 acquired	 flight	 data	 is	 susceptible	 to	
corruption	 by	 systematic	 errors	 like	 scale	 factors,	 zero	 shift	
biases	and	time	shifts.	Since	these	errors	may	introduce	data	
incompatibility;	 for	 example,	 the	measured	 incidence	 angles	
not	 being	 in	 agreement	 with	 those	 reconstructed	 from	 the	
accelerometer	 and	 rate	 gyro	 measurements,	 it	 is	 imperative	
to	 perform	 data	 compatibility	 check	 before	 proceeding	 for	
parameter	 estimation.	 In	 other	words,	 the	 data	 compatibility	
check,	which	is	called	as	flight	path	reconstruction	(FPR),	is	an	
integral part of aircraft parameter estimation1.	The	main	aim	of	
a	data	compatibility	check	is	to	ensure	that	the	measurements	
used	 for	 subsequent	 aerodynamic	 model	 identification	 are	
consistent	 and	 error	 free.	 The	 following	 set	 of	 unknown	
parameters,	 presented	 in	Eqn.	 (1),	were	 considered	adequate	
for	 reconstructing	 the	 longitudinal	 dynamics	 of	 the	Hansa-3	
and	CDRW	configuration	for	data	compatibility	check.	

T

x y za a a p q r Ka Θ = ∆ ∆ ∆ ∆ ∆ ∆ ∆a                              (1)
Data	compatibility	check	has	been	performed	on	HNS_

STL1	 and	URW_STL1,	 using	MLE	method.	Whereas	ATS_
STL1	flight	data	set,	which	has	been	taken	from	Jategaonkar1, 
is already compatible and can be readily used for parameter 
estimation.	 The	 estimated	 biases	 and	 scale	 factors	 obtained	
during	the	data	compatibility	check	of	near	stall	flight	data	of	
Hansa-3	and	CDRW	are	presented	in	Table	2.

It	can	be	observed	from	Table	2	that,	even	for	high	angles	
of	 attack	flight	 data	 the	biases	 are	 almost	negligible	 and	 the	

Figure 2. Photograph representing instrumented prototype of 
CDRW configuration14.

Figure  1. (a) CAD model representing the Planform view 
CDRW14 and (b) CAD model representing the side 
view of CDRW configuration14.

(a)

(b)

Vertical	Tail
Mount

Parameters Hansa-3 CDRW
Wing span (b) 10.47 m 1.50 m
Planform area (S) 12.47 m2 0.787 m2

Aspect ratio (Ar) 8.79 2.93
Root	chord	(cr) 1.30 m 0.90 m
Tapper	ratio	(λ) 0.62 0.17

Mean	aerodynamic	chord	(MAC)		( )c 1.21 m 0.61 m

Weight	(W) 7357.50 N 35.81 N

Table 1.  Geometric and design parameters of Hansa-3 and 
CDRW configuration
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scale factors ( )Ka 	appeared	to	be	close	to	the	expected	value	
(unity)	 for	 both	 Hansa-3	 and	 CDRW	 aircrafts.	 Further	 the	
lower	values	of	values	of	Cramer-Rao	bounds,	for	the	estimated	
compatibility	 parameters,	 has	 established	 higher	 level	 of	
confidence	 in	 the	 generated	 flight	 data	 sets.	 The	 following	 
Fig.	 3	 presents	 the	 compatible	 flight	 data	 (ATS_STL1)	 that	
has	been	used	to	estimate	the	stall	characteristic	parameters	of		
ATTAS	aircraft1.

The	measured	and	computed	response	of	motion	variables	
obtained	 during	 the	 data	 compatibility	 check	 of	 Hansa-3	
and CDfP aircrafts are presented in figs. 4(a) and 4(b), 
respectively.

3. QUASI STEADY STALL MODEL
The	aerodynamic	model	during	stationary	attached	flow	

conditions	 can	 be	 sufficiently	 described	 with	 a	 set	 of	 time-
invariant	 parameters	 and	 linear	 models1. But for an aircraft 
performing	 high	 angle	 of	 attack	manoeuvers,	 the	 associated	
aerodynamics	 becomes	 highly	 non-linear.	 This	 may	 be	
attributed	to	the	flow	separation	phenomenon	as	well	as	unsteady	
aerodynamic effects1.	The	lift	generated	by	the	aircraft	during	
these	manoeuvers	is	highly	influenced	by	the	unsteady	effects.	
Further	these	effects	are	dominant	in	the	post	stall	region	due	

Figure 3. Compatible flight data of ATTAS aircraft: 
ATS_STL11.

Figure 4.  Data compatibility check: HNS_STL1, URW_STL16,14: (a) HNS_STL1 and (b) URW_STL1.

(a)
TIME	(s) TIME	(s)

(b)

TIME	(s)
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the	flow	separation.	The	type	of	flow	separation	differs	from	
one	 configuration	 to	 other.	 In	 order	 to	 analytically	 postulate	
this	complex	flow	phenomena,	 researchers	have	 followed	an	
approach	 based	 on	 Kirchhoff’s	 theory	 of	 flow	 separation1. 
This	 theory	 describes	 analytically	 the	 flow	 separation	 point	
including	the	hysteresis	as	a	function	of	internal	state	variables.	
With	 the	 help	 of	 Kirchhoff’s	 theory	 the	 non-linearity	 has	
been	 incorporated	 by	 postulating	 the	 aerodynamic	model	 as	
a	 function	 of	 flow	 separation	 point	 and	 stall	 characteristic	
parameters.	Based	 on	 this	 theory,	 for	 a	 asymmetrical	 profile	
the	total	lift	acting	on	the	wing	can	be	modelled	as	a	function	of	
angle of attack ( a )	and	the	flow	separation	point	 1( )X . 

0

2
1( , )

2L L L
xC X C C

a

 + a = + a 
  

                               (2)

where		 LC
a
is	the	lift	curve	slope.	

The	position	of	 the	flow	separation	point	 in	Eqn.	 (2)	 is	
described	by	using	 the	 following	 single	ordinary	differential	
equation1.

{ }*
1 1 2

1 1 tanh[a ( )]
2

dX X
dt

τ + = − a − τ a − a

                
   (3)

where	 1τ and 2τ are	 transient	 and	 hysteresis	 time	 constants,	
respectively.	 The	 terms	 a1and *a corresponds to static stall 
characteristic	of	airfoil	and	break	point	respectively.	The	non	
dimensional term (0 1)X X≤ ≤ 	 represent	 the	 instantaneous	
location	 of	 idealissed	 flow	 separation	 point	 on	 the	 upper	
surface	of	the	wing.

Equation	(3)	is	a	generalised	mathematical	model	used	to	
estimate	the	flow	separation	point	including	the	hysteresis	and	
unsteady	effects.	To	estimate	the	parameters	 *

1 1, ,a a τ and 2τ  
the	flight	manoeuvers	 should	contain	a	dynamic	 stall,	which	
is	in	general	a	difficult	task	to	perform.	As	an	alternative,	it	is	
considered	that	the	execution	of	quasi-steady	stall	manoeuver	
is	relatively	less	difficult	and	risky	compared	to	the	dynamic	
stall	manoeuver.	Therefore,	a	simplified	approach	accounting	
for	quasi-steady	stall	characteristics	 *

1( ,a a and 2τ )	has	been	
used	 for	 the	 estimation	 from	 flight	 data1.	 Accordingly,	 the	
transient	effects	were	neglected	by	setting	 1τ to	zero	in	Eqn	(3).	
Therefore,	 the	 following	mathematical	model	 is	 sufficient	 to	
adequately	model	the	stall	hysteresis1.

{ }*
1 2

1 1 tanh[a ( )]
2

X = − a − τ a − a                                (4) 
                                                                                                                            

With	 this	 backdrop,	 the	 Kirchhoff’s	 quasi	 steady	 stall	
model	have	been	used	to	 incorporate	 the	non-linearity	 in	 the	
aerodynamic	model	of	CDRW	configuration.

4. HIGH ANGLE OF ATTACK PARAMETER 
ESTIMATION
The	near	stall	 longitudinal	aerodynamic	modelling	from	

high	angles	of	attack	flight	data	has	been	performed	by	using	
MLE	and	NGN	methods	for	Hansa-3	and	CDRW	configurations	
and	by	using	NGN	method	for	ATTAS	aircraft.	The	Eqns.	5(a)-
5(c)	 were	 used	 to	 postulate	 the	 lift	 coefficient	 of	 Hansa-3,	
ATTAS	 and	CDRW	configurations,	 respectively,	 in	 terms	 of	
flow	separation	point1.

0

2
1( , )

2L HNS L L
xC X C C

a

 + a = + a 
  

                                (5a)

0

2
1( , , )

2 ML ATS L L L
xC X M C C C M

a

 + a = + a + 
  

            (5b)

0

2
1( , , , )

2 2q eL e URW L L L L e
x qcC X q C C C C

Va δ

 + a δ = + a + + δ 
  

 
(5c)

The	 drag	 and	 pitching	 moment	 coefficients	 for	 the	
configurations	of	 interest	have	been	modelled	by	using	Eqns	
(6)	and	(7),	respectively.

( )
0

2 1D
D D L

CC C kC X
X

∂
= + + −

∂
                                      (6)

( )
0

1
2q e

m
m m m m m e

CqcC C C C C X
V Xa δ

∂
= + a + + δ + −

∂      
(7)

The	 flow	 separation	 point	 in	 the	 Eqns	 (6)	 and	 (7)	 are	
estimated	by	using	Eqn.	(4).	The	three	parameters	 1a  (airfoil 
static	 stall	 characteristics), 2τ  (time constant) and *a  (break 
point)	 are	 adequate	 to	 model	 the	 stall	 hysteresis1.	 These	
parameters	 have	 been	 estimated	 by	 using	 MLE	 and	 NGN	
methods	by	minimising	 the	 error	 between	 the	measured	 and	
estimated	 aerodynamic	 coefficients.	 Since	 it	 is	 not	 possible	
to	 measure	 the	 aerodynamic	 force	 and	 moment	 coefficients	
( , , )L D mC C C 	 during	 the	 flight	 tests,	 these	 coefficients	 have	
been	reconstructed	from	the	measured	accelerations	and	flow	
angles.	For	the	rest	of	this	paper	the	reconstructed	 , ,L D mC C C  
from	 flight	 data	 are	 considered	 as	 measured	 aerodynamic	
force	 and	 moment	 coefficients.	 The	 following	 vectors	
( , )HNS ATS URWandΘ Θ Θ 	 represents	 the	 parameters	 that	 are	 to	
be	estimated	from	the	flight	data	pertaining	to	high	angles	of	
attack	of	Hansa-3,	ATTAS	and	CDRW	aircrafts,	respectively.

0 0 0

*
1 2q X xe

T

HNS L L D m m m m D mC C e C C C C C a C C
a a δ

 Θ = a τ 
   

(8)

0 0 0

*
1 2M q X xe

T

ATS L L L D m m m m D mC C C e C C C C C a C C
a a δ

 Θ = a τ    (9)

0 0 0

*
1 2q q X xe e

T

URW L L L L D m m m m D mC C C C C C C C C a C C
a δ a δ

 Θ = a τ 
 (10)

Figures.	 (5)	 -	 (7)	 presents	 the	 measured	 and	 estimated	
aerodynamic	coefficients	from	near	stall	flight	data	of	Hansa-3,	
ATTAS	 and	 CDRW	 configurations	 respectively	 using	 MLE	
and	NGN	methods.

Table 2.  Data Compatibility check: HNS_STL1, URW_STL1

∆ax (m/s2) ∆ay (m/s2) ∆az (m/s2) ∆p (rad/s) ∆q (rad/s) ∆r (rad/s) Kα (-) ∆α (rad)

HNS_STL1 0.035
(0.0016)

0.042
(0.0015)

-0.008
(0.0022)

0.004
(0.0015)

0.003
(0.0011)

0.006
(0.0018)

0.895
(0.012)

0.018
(0.0011)

URW_STL1 -0.171   
(0.0194)

-0.667 
(0.0041)

0.513 
(0.0061)

0.057 
(0.0020)

-0.003 
(0.0011)

-0.045 
(0.0041)

1.129 
(0.0020)

0.027 
(0.0023)

( ) Cramer-rao Bound  
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Figure 6.  Parameter estimation using NGN method :ATS_STL11.

TIME	(s) a (°)

Figure 7. Parameter estimation using MLE and NGN methods: 
URW_STL114

TIME	(s) a (°)

Figure 5. Parameter estimation using MLE and NGN methods: 
HNS_STL16.

TIME	(s) a (°)

Table	3	presents	the	MLE	and	NGN	estimates	and	
their	corresponding	Cramer	Rao	bounds	of	Hansa-3,	
ATTAS	and	CDRW	configurations,	respectively.

Referring	 Fig.	 5,	 it	 is	 observed	 that	 the	
maximum	 lift	 coefficient	 measured	 during	 the	
single	 high	 angle	 of	 attack	manoeuver	 of	 Hansa-3	
aircraft is 1.52 at around an angle of attack of 
13.6°.The	 stall	 for	 Hansa-3	 aircraft	 during	 wind	
tunnel	 tests,	with	 similar	 reynold’s	 number,	 occurs	
at. 012a ≈ 12°.	 Hence	 the	 generated	 flight	 data	 can	 be	
considered	as	sufficiently	high	angle	of	attack	flight	
data	 which	 can	 be	 used	 to	 estimate	 the	 non-linear	
parameters.	Whereas	 the	high	angle	of	attack	flight	
data	 considered	 to	 estimate	 the	 stall	 characteristic	
parameters	of	ATTAS	aircraft	have	two	back	to	back	
quasi	steady	stall	manoeuvers,	as	shown	in	Fig.	6.	It	
is	observed	that	 the	first	 instant	of	stall	occurred	at	
85	s	and	the	second	at	180	s,	respectively.	In	case	of	
CDRW,	as	presented	in	Fig.	7,	the	high	angle	of	attack	
manoeuver	has	been	performed	by	smoothly	varying	
the	elevator	deflection	from	-3°	to	-12°	over	1.05	s	and	
held	constant	for	1.66	s	then	trimmed	back	to	-0.5°	
approximately.	During	this	excitation	the	unmanned	
vehicle	 has	 reached	 a	 maximum	 angle	 of	 attack	
close	 to	23°.	 It	 can	be	 inferred	 from	Figs.	 5-7	 that	
the	estimated	response	of	longitudinal	aerodynamic	
force	and	moment	coefficients,	using	MLE	and	NGN	
methods,	are	in	close	match	with	the	measured	flight	
data.	However	there	is	a	small	but	noticeable	deviation	
in	the	estimation	of	 mC 		for	both	Hansa-3	and	CDRW	
using	MLE	method.	The	competency	of	quasi	steady	
stall model for manned and unmanned aircrafts is 
evident	from	the	estimated	hysteresis	lift	coefficient,	
presented	 in	 Figs.	 5-7.	 It	 is	 also	 noticed	 that	 both	
MLE	and	NGN	methods	were	able	to	reproduce	the	
hysteresis	 quite	 satisfactorily	 using	 the	Kirchhoff’s	
quasi-steady	stall	model.	Referring	Table	3,	for	most	
of	 the	parameters	 the	 estimates	 from	MLE	method	
are	in	close	agreement	with	NGN	estimates.	For	the	
sake	 of	 comparing	 the	 NGN	 estimates,	 the	 MLE	
estimates	presented	 for	ATTATS	aircraft	have	been	
referred from Jategaonkar1.	Further	the	lower	values	
of	Cramer	Rao	bounds	have	increased	the	confidence	
in	 the	 estimated	 parameters	 using	MLE	 and	 NGN	
method.	It	can	be	inferred	that	the	estimates	of	stall	
characteristic	parameters	such	as	 *

2,a τ and 
XDC  are 

in	 close	 agreement	 from	 both	 the	 methods	 where	
as	 the	 estimates	 of	 1a and 

XmC 	 from	MLE	method	
differs	from	that	of	NGN	estimates.

The	predictive	capability	of	the	identified	model	
is	 determined	 by	 comparing	 the	 flight	 measured	
response	with	 those	predicted	by	 the	model	 for	 the	
same	 (‘identical’)	 control	 inputs1.	 In	 flight	 vehicle	
applications	 terminology,	 this	 process	 is	 often	
called	 ‘proof-of-match’1.During	 this	 proof-of-
match	exercise,	the	identified	aerodynamic	model	is	
kept	fixed.	 In	order	 to	gain	more	confidence	 in	 the	
estimated	 parameters,	 the	 proof-of-match	 exercise	
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5. CONCLUSION
The	 endeavour	 to	 perform	 non-linear	 aerodynamic	

modelling	at	high	angles	of	attack	(near	stall)	for	manned	and	
unmanned	 aircrafts	 has	 been	 accomplished	 using	MLE	 and	
NGN	 methods.	 The	 non-linear	 aerodynamic	 modelling	 was	
achieved	using	Kirchhoff’s	quasi	steady	stall	model.	The	stall	
characteristic	 parameters	 have	 been	 estimated	 for	 Hansa-3,	
ATTAS	and	unmanned	CDRW	configuration	using	one	set	of	
near	stall	flight	from	each	aircraft.	The	lower	values	of	estimated	
systematic	errors	and	their	corresponding	Cramer	Rao	bounds,	
using	data	compatibility	check,	have	enhanced	the	confidence	
in	the	generated	flight	data	Hansa-3	and	CDRW	configurations.	
The	estimates	of	most	of	the	stall	characteristic	parameters	from	
flight	data	using	both	MLE	and	NGN	methods	were	in	close	

Table 3.  Parameter estimation: HNS_STL1, ATS_STL1, URW_STL1

Parameter
HNS_STL1 ATS_STL1 URW_STL1

MLE NGN MLE NGN MLE NGN

0DC 0.034 0.029 0.044 0.037 0.024 0.013
(3.42E-04) (2.55E-04) (4.12E-04) (9.80E-03) (1.64E-03)

e
0.836 0.759 0.84 0.843 - -
(6.74E-03) (4.08E-03) (1.22E-02)

0LC 0.402 0.401 0.158 0.159 0.077 0.052
(7.43E-03) (4.39E-03) (2.24E-03) (1.10E-03) (4.79E-03)

LC
a

5.030 5.259 3.298 3.253 3.340 3.114
(7.94E-02) (5.57E-02) (3.37E-02) (2.59E-01) (1.21E-01)

mLC
M

- - 9.07 9.416 - -
(1.50E-01)

qLC - - - - 5.105 3.296
(4.39E-01) (3.26E-01)

eLC
δ

- - - - 0.677 0.623
(3.00E-01) (1.58E-01)

0mC 0.025 0.083 0.051 0.049 0.022 0.008
(2.26E-03) (9.09E-03) (2.14E-03) (3.20E-03) (7.89E-04)

mC
a

-0.811 -0.765 -0.176 -0.450 -0.182 -0.153
(2.78E-02) (1.00E-01) (1.98E-02) (9.20E-03) (1.92E-02)

qmC -14.309 -9.335 -6.146 -2.095 -0.669 -0.488
(2.91E-01) (1.39E+00) (2.75E-01) (2.40E-03) (5.10E-02)

emC
δ

-1.132 -0.719 -0.391 -0.129 -0.299 -0.224
(2.38E-02) (8.51E-02) (1.45E-02) (1.34E-02) (2.59E-02)

1a 25.152 19.427 23.716 17.503 9.401 3.681
(1.51E-01) (6.43E-01) (1.41E-01) (1.51E-01) (2.99E-01)

* ( )rada 0.183 0.183 0.309 0.380 0.469 0.429
(1.51E-03) (1.27E-03) (2.75E-03) (5.33E-02) (1.26E-02)

2τ 22.748 22.339 23.99 22.910 14.187 11.990
(4.49E-01) (4.22E-01) (4.22E-01) (8.95E-01) (6.74E-01)

XDC 0.004 0.002 0.079 0.166 0.09 0.097
(4.07E-04) (4.37E-04) (1.04E-02) (1.48E-02) (5.61E-03)

XmC -0.125 -0.075 -0.126 -0.273 -0.055 -0.015
(5.50E-03) (2.36E-02) (3.05E-02) (4.70E-03) (5.61E-03)

() Cramer rao Bound

was	 performed	 using	 three	 sets	 of	 flight	 data,	 one	 for	 each	
configuration,	 and	 the	 obtained	 results	 were	 presented	 in	 
Figs.	8-10,	respectively.

Referring	 Figs.	 8-10,	 it	 could	 be	 appreciated	 that	 the	
estimated/simulated	 response	 computed	 using	 the	MLE	 and	
NGN	methods	have	a	decent	match	with	the	measured	flight	data	
for	all	the	three	aircrafts.	It	is	also	observed	from	the	proof	of	
match	exercise	that	the	estimated	stall	characteristic	parameters	
and	subsequently	the	quasi	steady	aerodynamic	model	is	able	
to	 reproduce	 the	 measured	 hysteresis	 corresponding	 to	 a	
different	stall	manoeuver.	Further	to	enhance	the	confidence	in	
the	estimated	stall	characteristic	parameters	and	also	to	check	
their	consistency,	using	both	methods,	a	higher	number	of	stall	
manoeuvers	for	each	configuration	have	to	be	considered.
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Figure 10.  Proof of match exercise for CDRW configuration.

TIME	(s) a (°)

Figure 9.  Proof of match exercise for ATTAS aircraft.

TIME	(s) a (°)

Figure 8.  Proof of match exercise for Hansa-3 aircraft.

TIME	(s) a (°)

agreement	 with	 lower	 values	 of	 corresponding	
Cramer	Rao	bound.	Further	the	Kirchhoff’s	quasi	
steady	stall	model	is	able	to	estimate	the	hysteresis	
quite satisfactorily (closer to measured data)using 
both	MLE	and	NGN	methods.	 It	 is	 also	evident	
from	the	proof	of	match	exercises	that	 the	NGN	
method,	 which	 utilise	 a	 trained	 neural	 network	
and	 thus	 bypassing	 the	 need	 to	 solve	 equations	
of	motion,	was	able	to	perform	on	a	par	with	the	
classical	MLE	method.	However	the	consistency	
in	the	estimates	of	stall	characteristic	parameters	
using	 both	 MLE	 and	 NGN	 method	 have	 to	 be	
verified	with	the	higher	number	of	high	angle	of	
attack	flight	data	sets.	
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