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NOMENCLATURE 
( )x t   Input signal

B   Channel bandwidth
maxB   Spectrum bandwidth
( )X f   Fourier transform of x(t)

L   Number of channels
N   Number of occupied channels
k   Spectral indexed vector
t   Time period
T   Time 
Z   Set of integers
p   Number of samples in each block
γ   SubNyquist factor
σ   Noise eigenvalue
Λ  Diagonal matrix
f   Frequency

U   Full rank matrix
ic   Sample pattern

E  Expected value
R̂   Correlation matrix

maxq   Maximum number of occupied channels
minq   Minimum number of occupied channels

q   Number of occupied channels 
M   Number of samples
[ ]h n   Interpolation filter

( )H f   Frequency response
( )w t   White noise
( )n f   Gaussian complex noise
( )A k   Modulation matrix
( )y f   Observation vector

λ   Eigenvalues
E  Eigen vector

( )g r   Geometric mean
( )a r   Arithmetic mean

m   Samples
I   Identity matrix 
Ω  Spectral occupancy ratio
favg  Average sampling rate

dP   Probability of detection

fP   Probability of false alarm

1. INTRODUCTION
The rapid growth of communication systems and the ever 

growing number of applications and users has put a significant 
demand on the spectral resources. An intelligent system which 
is capable of surveying the spectrum, looking for an available 
frequency band, and adapting its operation to efficiently 
exploit the available environment, without interfering with the 
existing communication channels, is called as cognitive radio 
(CR). For such systems, the primary information needed to 
strategise its operation, is a quick survey of the spectrum to 
locate existing channels, and to estimate the white space (or 
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free region) in between1,2. Such a CR system, in general, has 
no prior knowledge of the spectrum utilisation; it becomes 
necessary to analyse a wider spectrum, before a suitable white 
space is available for its use.

Currently, there exists several methods for sensing of the 
spectrum e.g., filter bank spectrum sensing, energy detection 
(ED), Multitaper spectrum estimation, etc., most of which use 
sampling the spectrum at Nyquist rate3. Such methods, when 
applied over wide bands necessitate very efficient, high speed, 
and accurate AD converters, thus increasing cost and forgoing 
speed and accuracy. To improve the efficiency and speed at a 
low cost, new technologies are evolved, which use less number 
of samples, or subNyquist sampling4. These technologies use 
a compressive sampling by initially using subNyquist samples 
to reconstruct the broadband spectrum and apply spectrum 
sensing on the reconstructed spectrum.

The methods available for recovery or reconstruction of 
the multiband spectrum are broadly classified into two classes 
– nonblind recovery and blind recovery. One of the nonblind 
methods proposed by Venkataramani & bresler5 employs 
multicoset subNyquist sampling, by dividing the multiband 
spectrum into a number of subbands, and uses multiple or 
complex AD converters6 This needs prior knowledge of the 
subband locations. However, the blind methods proposed by 
Mishali7, et al. and Feng8, et al. needs no prior knowledge of 
the subband locations. In addition, other subNyquist sampling 
techniques using analog processing at the front end have also 
been proposed9,10. blind methods involving different versions 
of multicoset samplings are also proposed11-13. Several other 
methods have been proposed using subNyquist sampling. 
While Edge-Detection Algorithm has been used by Tian 
and Giannakis14, assuming that each of the subbands has a 
sharp edge, Pal and Vaidyanathan15 have employed Coprime 
Sampling Algorithm which uses two branches of sampling, 
each of whose sampling rates are mutually coprimes.

In the current study, a well known method of broadband 
spectrum sensing is undertaken, which substantially brings 
down the sampling rate. A wide spectrum consisting a known 
number subbands is considered, each of which is tested by using 
its correlation matrix to detect the presence of an occupied 
signal. The efficacy of this method is evaluated by calculating 
the detection probability of the occupied channel as a function 
of the limited number of samples and the signal to noise ratio 
of random input signals.

2. PROBLEM STATEMENT
It is assumed that the received broadband analog signal 

( )x t is sparse, and is band limited to ( )max0, B . The classical 

Nyquist rate is maxB .
Let ( )X f be the Fourier transform of ( )x t . based on the 

methodology adopted, the given complete spectrum is divided 
into L narrow band channels. Let B the bandwidth of each of 
these narrow band channels, such that

max
B L B= ×                                                                       (1)
The L narrow band channels, thus derived, are then 

labelled as 0  to 1L − .The channels which contain the signals 
are called occupied channels, and the rest are called unoccupied 
channels. Let N  be the number of such occupied channels. 
The indices of the detected occupied channels are organised 
into a vector k , called spectral indexed vector, whose length is 
q , and which satisfies { }1 2, , , ,   qk k k k q k= =

.
Figure 1 shows the input spectrum of a typical multiband 

signal in frequency domain, with 32 narrow band channels  
( L  = 32), each of which occupies a bandwidth of B  = 10 MHz. 
In this study, N  = 4 channels are occupied, and the occupied 
channel set { }10,20,25,30k = . Thus, the problem is to detect 
the presence of the signals in each of the 32 spectral bands, at a 
subNyquist sampling rate, for a given maxB  and B .

3. BROADBAND SPECTRUM SENSING
Figure 2 is the block diagram for broadband spectrum 

sensing system. using a multicoset sampler, the input signal 
( )x t is sampled, at a rate lesser than the classical Nyquist 

rate. using a multirate system, the output of the multicoset 
sampler is partially shifted. The multirate system consists of 
an up sampling, interpolation stage, delay stage, and a down 
sampling stage. using this data the sample correlation matrix is 
computed. This correlation matrix is analysed using subspace 
methods for estimating the number of occupied channels and 

Figure 1.  Input signal in frequency domain.

Figure 2. The block diagram for broadband spectrum sensing system.
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occupied channel set recovery. Various stages of this block 
diagram are described in detail.

3.1 Multicoset Sampling
The multicoset sampler5 is used to sample the given analog 

broadband signal ( )x t . This broadband signal is considered to 
belong to the class of continuous multiband signals of limited 
energy. Assuming that the signal is sampled non uniformly at 
periods ( ) , ,it mL c T m Z= + ∈ 1 i p≤ ≤ and that the samples 
are categorised into p  sequences satisfying the condition:

( ) ( )/ ,   i ix m x mL c T m Z= + ∈                                   (2)
where T  represents time, L  represents block length, p
represents the number of samples in each of these L  blocks, 
and { }1 2, , , pC c c c= 

represents the sample pattern7.

Choosing 
max

1T B= , the average sample rate of this 

scheme is max.avgf B= γ where, ( )p Lγ =  is γ called the 

subNyquist factor. Given L the number of occupied slots are 

formulated using the relation 
max max

;NBL BLq N N
B B

   
≤ ≤ +   

   
min max q q q≤ ≤ . The number of occupied slots which depends 

upon the band location is chosen between the above two 
bounds. Let minq q= where maxp q>  and choose max 1p q= +  
where maxq  is the maximum number of occupied channels 
that can be detected. Though the contents or the information 
in the bands remains a constant, the carriers deviate as to fill a 
maximum number of occupied channels.

3.1.1 Correlation Matrix
For correlating the task of spectrum sensing and 

parameter estimation, the correlation matrix of the sampled 
data is computed. This is achieved by applying the following 
methodology on the sampled data:

It is assumed that max 1B = , and 1/B L= . Substituting for
T  and maxB  in Eqn (2), the sampling sequence is given by

( ) ( )i ix m x mL c= +                                                        (3)

Taking DFT of Eqn (3), results in:

( )
2 21

0

1  e ei ij c f j c rL
L L

i
r

f r
X f X

L L L

π π−

=

= + 
 
 ∑                          (4)

Next, each ( )ix m is oversampled by a factor L , such 
that

[ ]
,    ,

0,           otherwise

i
nx n mL m Z
L

ux n
  = ∈ 
 

= 


                                                (5)

In the frequency domain,
( ) ( )

Iu iX f X Lf=                                                      (6)

( ) ( )
21

2

0
 e e i

i

I

j c rL
j c f L

u
r

X f B X f rB
π−

π

=

= +∑                      (7)

where ( )
iuX f represents the DFT of the sequence 

Iux  that is 
oversampled.

Then it is sieved to get ( ) [ ] [ ]
i ih ux n x n h n= ∗ , where [ ]h n

is the interpolation mask. Its frequency response is

( ) { [ ]1,     0, 

0,   otherwise  

f B
H f

∈=                                               (8)

Filtering ( )uiX f with ( )H f clips the output frequency 
range such that

( ) ( ) [ ],   0,
I Ih uX f X f f B= ∈                                        (9)

Further this output sequence is delayed with ic  samples 
satisfying,

[ ] [ ]
i ic h ix n x n c= −                                                        (10)

Then delaying each signal with ic  samples gives
( ) ( ) 2e i

i i

j c f
c hX f X f − π=                                      (11)

( ) ( ) [ ]
21

0
 ,  0,e i

I

j c rL
L

c
r

X f B X f rB f B
π−

=

= + ∈∑             (12)

Assuming that the input signal ( )x t  is distorted by the 
white noise ( )w t  whose Fourier transform is ( )W f , Eqn. 
(12) is re-written as

( ) ( )

( ) [ ]

21

0
21

0

 

             ,   0,

e

e

i

i

i

j c rL
L

c
r

j c rL
L

r

X f B X f rB

B W f rB f B

π−

=

π−

=

= +

+ + ∈

∑

∑
           (13)

where the term ( ),   0 1X f rB r L+ ≤ ≤ − , represents 
frequency component of the signal in each channel. This term 
is zero for a unoccupied channel. Therefore the above equation 
takes the form:

( ) ( )

( ) [ ]
1

2

2

0

 

             ,  0,

e

e

i

i

iL

j c r
L

c
r k

j c r
L

r

X f B X f rB

B W f rB f B
−

π

∈

π

=

= +

+ + ∈

∑

∑
                      (14)

The matrix form of Eqn. (14) is
( ) ( ) ( ) ( ) [ ] ,      0,y f A k x f n f f B= + ∈                   (15)

where ( )n f  is equivalent to the noise component and ( )y f
is the observation vector given by

( ) ( ) ( )1 , ,  py f X f X f ′ =  

                                   (16)

where ( )x f  represents the unknown vector of signal spectrum 
parameters, given by:

( )

( )
( )

( )

[ ]

1

2

.
 ,     0,.

.

q

X f k B
X f k B

x f f B

X f k B

+ 
 + 
 
 = ∈
 
 
 
 + 

                          (17)

where ( ) , iX f k B+ [ ] 0,f B∈ are the frequency elements of 
the signal in the occupied channel, labelled by ik ( ) p NA k C ×∈
is the modulation matrix, expressed as

( )( )
2

,  e i lj c k
LA k i l B
π

=                                                 (18)
Assume a Gaussian complex noise ( )n f , which is also 

uncorrelated with the signal, with distribution of ( )20, IN σ . 
The correlation matrix using the observations is 

constructed and is given by
( ) ( )

( ) ( ) 2

R E y f y f

R A k UA k I

∗

∗

 =  
= + σ                                                (19)



CHANDRASEKHAR, et al.: PHD bASED SPECTRuM SENSING FOR bROADbAND CR

83

where
( ) ( )  U E x f x f∗ =                                                    (20)

represents the correlation matrix of the signal vector16.
To compute the real correlation matrix R , the unknown 

distribution of the signal is required. Therefore R   is estimated 
by integrating ( ) ( )E y f y f∗   over the interval[ ]0, B . It can 
also be directly computed in time domain of the sequences, 
using Parseval’s identity, at a Nyquist rate equal to. because 
each sequence ( )

icx m′  is the output of a narrowband filter, it 
can easily be sampled at a lower rate. Thus it is not necessary 
to compute at a higher sampling rate maxB . Thus the sequences 
are down sampled by a factor L  such that

( ) [ ]
i id cx m x mL=                                                    (21)

The cumulative process from ( )ix m to ( )
idx m

 
is 

considered as a partial shifting of ( )ix m . The snapshot vector 
( )dx m  may be defined as:

( )

( )
( )

( )

1

2

.

.

p

d

d

d

d

x m

x m

X m

x m

=

 
 
 
 
 
 
 
  

                                                       (22)

The correlation matrix is computed using Eqn. (16)

( ) ( )
1

1ˆ
M

d d
m

R X m X m
M

∗

=

= ∑                                                (23)

assuming that R̂ R→  s M → ∞ .

3.1.2 Subspace Analysis
In each of the spectral band the signal is assumed to be 

uncorrelated and distinct with other bands. Therefore, the 
correlation matrix will have full-rank. The subspace methods 
used are as described as follows.

(a) Estimation of the Number of Occupied Channels
The eigenvectors of R , with respective eigenvalues

2σ , geometrically is orthogonal to the modulation matrix  
( )A k , as given by the relation (19).  All the other eigenvectors 

are in the range space of ( )A k  and thus they are called as 
signal eigenvectors. Decomposing R  into signal and noise 
subspaces16, gives -

s s s n n nR E E E E∗ ∗= Λ + Λ                                                    (24)
where sΛ  is the diagonal matrix of the signal eigenvalue, nΛ
is the diagonal matrix of the noise Λ  eigenvalue, and sE  is 
the matrix of the signal eigenvector and nE  is the matrix of 
the noise eigenvectors. The eigenvector matrix sE , span the 
range space of ( )A k , which denotes the signal subspace and 
the noise eigenvector is ( )nE A k⊥ . using the orthogonality 
property, the signal parameters are estimated by evaluating the 
dimension of the noise subspace.

The ordered eigenvalues of R̂  are
1 2 ... ...q pλ ≥ λ ≥ ≥ λ ≥ ≥ λ , where q  eigenvalues are 

significant, and the remaining are all equal to ( )2σ 17. Thus, 
for a large M , the dimension of signal vector can be evaluated 
from the multiplicity of the least eigenvalues of R̂ . In practice 
the number of samples is a function of the sensing period. Thus, 

ideally the number of samples must be least possible, more so 
in case of time-varying channels. Therefore, the sample matrix 
R̂ R≠ .

Further, the separation between the signal and noise 
eigenvalues needs a threshold level. This threshold level 
depends on the number of samples and the corresponding noise 
power. For the present work the noise power is presumed to 
be a constant factor and the threshold is kept fixed throughout 
the analysis for the detection of the input frequencies. The 
upper half of the Fig. 3 shows the ordered eigenvalues that are 
bifurcated by a horizontal line representing the threshold level. 
It is observed that there are four eigenvalues greater than the 
threshold. This indicates the number of occupied channels. To 
overcome the difficulties of setting the threshold, theoretical 
information criteria, such as minimum description length 
procedures detailed below have been used.

In minimum description length, the number of occupied 
channels satisfying the criterion within the range min maxq r q≤ ≤
can be evaluated using17,18

( ) ( )
( )

( )

 ˆ arg  min log

1
      2 log

2

r

M
g r

q p r
a r

r p r M

−= −

+ −

                                (25)

where M  is the number of samples; ( )g r is the geometric 

Figure 3. Ordered eigenvalues of the correlation matrix and 
Probability of detecting the number of occupied 
channels.
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mean of the ( )p r−  eigenvalues of the correlation matrix and 

is given by ( )
1

1

p
p r

i
i r

g r −

= +

= λ∏ ; ( )a r  is the arithmetic mean of 

the ( )p r−  eigenvalues of the correlation matrix and is given 

by ( )
1

1 p

i
i r

a r
p r = +

= λ
− ∑ .

The probability of detection of the number of occupied 
channels, [i.e., [ ]ˆProbdP q q= = ], is related to noise 
distribution, SNR and the number of samples, and is always 
not equal to unity. However, this can be improved by using 
the method of locating peaks, as done in Pisarenko harmonic 
decomposition (PHD) algorithm.

(b) Occupied Channel Set Recovery
ˆ

nE is denoted as a ˆ( )p p q× − matrix consisting of all 
noise eigenvectors in descending order. After estimating 
the occupied channels, the eigenvector corresponding to the 
minimum eigenvalue minλ is chosen and is denoted by minv .

The location of occupied channels is recovered using 
the eigenspectrum of the Pisarenko harmonic decomposition 
(PHD) algorithm19.

( ) 2

min 2

1
  ,   0 1PHD

k

P k k L
a v

= ≤ ≤ −                                (26)

where the notation 
2

 stands for the 2l -norm and k is the 
channel index. Also, ka is a column of ( )A k , given by

1 2 22 2
1 , ,  ... , 

p
Tj kcj kc j kc

L L L
k

LT
a e e e

ππ π 
=  

  
                         (27)

In general, the algorithm generates as many values as 
there are number of channels ( L ). If k is the labelled as an 
occupied channel, ( )PHDP k  is significant at that point. The 
location of occupied channels is obtained by comparing the 

( )PHDP k values with a threshold value as follow:
( ){ }ˆ

i PHDk k P k threshold= >                                          (28)
Figure 4 shows the spectral index of the occupied channel 

set and it is observed that the presence of an occupied channel 
corresponds to significant values of ( )PHDP k . The remaining 
are obviously unoccupied channels available for the cognitive 
radio. After finding the spectral index, the procedure of 
reconstruction is the same as that of the known spectrum. The 
reconstructed signals in frequency domain are shown in the 
Fig. 5.

4. RESULTS AND ANALYSIS
The process of  blind spectrum sampling and reconstruction 

using PHD algorithm is implemented in Lab VIEW™ and 
the performance analysis is carried out through MonteCarlo 
simulations.

The input signal by the CR is generated using

( ) ( )( )
1

2 sin  e i
N

i i i
i

j f tx t A c B t t
=

π= −∑                               (29)

where ( ) ( ) ( )sin sinc x x x= π π  and N is the number of bands. 
The amplitude, the bandwidth, the time offset and the carrier 
frequency of the i th band are, respectively, iA , iB , it  and if .

It is assumed that there are 4N = subbands, in the 
frequency range ₣ [ ] ( )max0, 0,320  MHzB∈ = . Hence the Nyquist 

rate for this signal is
max

1
320 MHzB

T
= = .

The bandwidths of the subbands are 
1 2 3 4 10 MHzB B B B= = = = .The central frequencies of the 

subbands are 1f  = 100 MHz, 2f  = 200 MHz, 3f  = 250 MHz, 
and 4f  = 300 MHz.

The Landau lower bound20 for the set F, is defined as
( ) ( )

1
 N

i ii
F b a

=
λ = −∑                                                    (30)

( ) 4

1
  10 10 10 10 40ii

F B
=

λ = = + + + =∑ .
To quantify the sampling efficiency for signals with a 

given spectral support F , the spectral occupancy ratio is given 
by ( )

max

40
0.125

320
F

B
λ

Ω = = =                                      (31)

The selection of parameters L, P, and set C are more 
important in the unknown spectral case. Discovering the 
number of occupied channels cannot be achieved exactly 
owing to unknown band locations.

L is calculated using the relation max 320
32

10
B

L
B

= = = .

The spectral index is computed using the expression 
1

N
ii

k k
=

=


. Thus { }10, 20, 25,30k =  and q k= . Thus, selecting
max 1 9p q= + =  is sufficient for a perfect reconstruction. The 

Figure 4.  Spectral index of the occupied channel set.

Figure 5.  The reconstructed signals in frequency domain.
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sampling pattern C  can be obtained using the sequential 
forward selection algorithm as { }0,1, 2,8,10,16,18, 24, 26C = . 
The corresponding condition number for this sampling pattern 
is ( )( ) 3.2cond A k = . The average sampling rate avgf is given 
by maxavgf B= γ ∗ , where 9 32 0.28125p Lγ = = =  is termed as 
the subNyquist factor.

The process of simulation generated 1024M =  samples 
of ( )x t , uniformly with 1 320 0.003125T = = and then the 
sequence of ( )ix n  for 1, 2,..., 9i =  is created by picking the  

ic th sample and zero padding inter sample distance by 1 31L − =  
zeroes. The sequences were filtered with a low-pass 
filter having the cut off frequency as max /cf B L= . To 
create a real valued (nonideal) lowpass filter [ ]rh n  of 
length 383hN = , with normalised cut off frequency 
at 1cf L= , passband ripple of 0.02 and stopband 
ripple of 0.008, the frequency is shifted to obtain the 
complex filter [ ] [ ] ( )exprh n h n j n L= π . The operation 
of filtering with [ ]h n introduces a delay of dt  at the 
output that is equal to ( )1 2 192dt Nh= + =  samples; 
hence the sample numbers are considered from

1 193dt + =  onwards.
The correlation matrix 9 9R̂ ×  is calculated using the  

Eqn (23). The ordered eigenvalues 1λ  to 9λ and the 
corresponding eigenvectors of R̂  are computed.

using Eqn (25) the number of occupied channels are 
estimated to be q̂  = 4. The estimated spectral index from the 
Eqn (28) is found to be { }10, 20, 25,30k̂ = .

At low SNR values and for different number of samples 
(M), the probability of detecting the four occupied channels is 
empirically estimated. The PHD estimation function is expected 
to sense the occupied channels with a higher probability as M  
and SNR increases.

The lower half of the Fig. 3 depicts the computed 
probability of detecting the number of occupied channels 

( )ˆ 4rP q =  as a function of number of samples for different 
lower SNR values.

The number of occupied channels N  is estimated using 
the eigenvalues of the correlation matrix, by using the 100 
MonteCarlo simulations, along with the different values for M
and SNR, using Eqn (25). It is expected that a high probability 
of detection can be achieved with increase in M and SNR.

It is observed from lower half of the Fig. 3 that for an 
SNR equal to +2 db, rP  becomes 90 per cent after 72M ≥ . 
This means that for an SNR equal to +2 db, the number of 
occupied channels is detected with more than 72 samples. 
Also it is observed that for an SNR equal to 0 db, the occupied 
channels can be detected with more than 74 samples and for 
SNR equal to 2 db the number of samples required is more 
than 76. It indicates that for lower SNRs, more number of 
samples is required to sense the occupied channels, with a 
higher probability.

It is indicated from the lower half of the Fig. 3 that for an 
SNR equal to 0 db the probability of detection curve indicated 
that one can achieve 90 per cent probability of detection for 
74 samples. This is compared with the spectrum sensing 
techniques using music-like algorithm where the results of 

Frequency 
range 
(MHz)

No. of  
channels

Centre 
frequencies 
(MHz)

Channel 
bandwidth 
(MHz)

Total 
no. of 
samples

SubNyquist 
Sample
(Pd=90 %)

0-320 4 100, 200,  
250, 300

10, 10,  
10, 10

320 70 
(SNR = +2db)

0-320 4 100, 200,  
250, 300

10, 10,  
10, 10

320 74 
(SNR = 0db)

0-320 4 100, 200,  
250, 300

10, 10,  
10, 10

320 76 
(SNR = 2db)

Table 1. Results deduced from the Pd as a function of m and SNR

the analysis indicate for an SNR equal to +0 db the achieved 
probability of detection of 90 per cent requires 41 samples 
using 1000 Monte-Carlo simulations. However the higher 
number of samples indicated by the proposed PHD technique 
can be attributed to the lower number of 200 Monte-Carlo 
simulations conducted.

Table 1 lists the results deduced from the lower half of 
the Fig. 3 which gives the subNyquist samples required for 
detecting the four occupied channels for different lower values 
of SNR.

It is clear that the number of samples required for detecting 
the occupied channels with high probability increased from 70 
samples to 76 samples as the SNR decreased from +2 db to 
-2 db (90 per cent). It therefore suggests that, the number of 
samples required to sense the occupied channels with higher 
probability increases with a decrease in SNR.

Further, the detection performance of the PHD algorithm 
is assessed by computing the probability of detection of the 
occupied channel as

( )d
1

1 ˆ  
N

i i
i

P Pr k k
N =

= ∈ ∈∑ k k                                      (32)

and the probability of false alarm as

( )f
1

1 ˆ  
L N

c c c
i i

i
P Pr k k

L N

−

=

= ∈ ∈
− ∑ k k                       (33)

where c =£ -k k is the complement set of k .
dP and fP  are computed from Eqn (32) and Eqn (33) for 

different M values and SNR. The results are displayed as in 
Fig. 6. The results show excellent detection performance even 
at low SNRs and smaller values of M . It is observed that at 
an SNR equal to+2 db and the number of samples 76M ≥ , 
the PHD algorithm senses the occupied channels with unit 
probability. The values of fP drastically decreases with an 
increase in M . Thus for 30M ≥ , it is near zero for all values 
of SNR. Figure 6 reveals that a perfect detection of channel 
occupancy is possible with a perfect estimation of N .

A comparison of the proposed PHD scheme with other 
existing schemes is shown in Table 2.

It is clearly seen in the Table 2 that the proposed PHD 
scheme has a good compression capability for detection of 
input frequencies with subNyquist samples alone, and has a 
low implementation complexity compared to other schemes. In 
view of this observation, it is suggested that the proposed PHD 
scheme is better than other schemes. 
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5. CONCLUSION
The limitations of noise uncertainty, high complexity and 

the need for high sampling rate that exists can be overcome 
by the PHD method for broadband spectrum sensing. The 
multicoset sampling scheme has been used at a low sampling 
rate, near to the channel occupancy. The problem of spectrum 
sensing has been morphed into the problem of estimating the 
parameters which has been solved by subspace methods. The 
multicoset samples have been fractionally shifted and have 

been used to compute the correlation matrix of the sampled 
data. The computational complexity has been observed 
to be linearly proportional to the amount of data, under 
the assumption of low spectrum utilisation, and results in 
considerable savings in terms of the sampling rate.

For a broadband system with an SNR of +2 db, it 
requires 82 samples, at a subNyquist rate ( γ ) of 28 per cent. 
The detection probability of 0.999 and the probability of the 
false alarm of 0.001 have been achieved.
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