
138

Defence Science Journal, Vol. 66, No. 2, March 2016, pp.138-145, DOI : 10.14429/dsj.66.9701
 2016, DESIDOC

1. IntroductIon
Malware is an all-encompassing term which encapsulates

all program created with intent to cause harm to computer
systems and includes viruses, worms, trojans among others.
The loss caused to the computer systems and their users
due to these malware can be in the form of loss of sensitive
information, system downtime, reduced performance and loss
of reputation.

Most of the antivirus softwares use signature based
techniques for malware detection that involves matching the
files to be checked for infection against a database containing
the malware signatures. This requires a signature to be generated
for each malware and can be easily evaded. The newest forms
of malware employ code obfuscation techniques such as
register renaming, code reordering, instruction replacement,
garbage code insertion and semantic nops which change the
signature of the malware while keeping the intended functions
intact. This helps the malware to evade the antivirus software
and continue spreading till such time its signature is generated.
These types of malwares are called as metamorphic malware
and have metamorphing engines built in their code allowing
the malware to create multiple variants of it. Detection of
metamorphic malwares is still an open challenge.

To overcome the challenges posed by metamorphic
malware, research has been done for their detection through
various techniques. Some of these techniques focused on
API calls, some on function calls made by malware while
some used control flow graphs. All these techniques can
be broadly classified into dynamic and static detection
techniques. Dynamic detection techniques involve executing
the malware in a protected environment and examining its run-
time behaviour. The focus is on analysis of API calls made,
actions being taken by the malware such as create process,

registry changes, file changes etc. Such detection techniques
can examine packed or polymorphic malware. Static detection
techniques involve examining the malware without executing
the program. Static detection analyse the content using header
information, control flow graphs, opcodes and API call graphs
etc and ensures complete code coverage and can reveal all
possible actions a malware may carry out; while dynamic
detection will only reveal information about what the malware
is doing at that time. Existing CFG and Opcodes sequence
based malware detection methods either cannot accurately
describe the behaviours of the original executables or based on
binary classification only. The remarkable growth in malware
and benign apps needs automated analysis of potentially
dangerous apps to aid malware analysts. In the real world
scenario, it would be extremely helpful to be informed of the
type as well as the family of the malware. The groupings of the
samples into families in turn help to establish the relationships
among them, identify the potential source of infection, detect
the newer variants and study the advancement of the a variety
of known malwares.

2. rELAtEd WorK
Use of machine learning technique for malware detection

was proposed by Schultz1, et al. Their experimental results
indicated to achieve good detection rates compared to the
traditional signature based methods. Kolter2, et al. improved the
results by using n-grams of the opcode sequences as features
which are extracted from executables. Bruschi3, et al. first
proposed the use of CFG for detection of self-mutating malware
along with graph matching techniques. Bilar4, et al. proposed
malware detection method based on opcode distributions in
malware and benign which differed significantly. Igor5, et al.
and Robert6, et al. used opcode sequences to represent program

control Flow Graph Based Multiclass Malware detection
using Bi-normal Separation

Akshay Kapoor* and Sunita Dhavale
*Department of Computer Engineering, Defence Institute of Advanced Technology, Girinagar - 411 025, India

*E-mail: akskap80@gmail.com

ABStrAct

Control flow graphs (CFG) and OpCodes extracted from disassembled executable files are widely used for
malware detection. Most of the research in static analysis is focused on binary class malware detection which only
classifies an executable as benign or malware. To overcome this issue, CFG based multiclass malware detection
system that automatically classifies the malware into their respective families is proposed. The use Bi-normal
separation (BNS) as a feature scoring metric. Experimental results show that proposed method using BNS outperforms
compared to hitherto use technique of document Frequency for multiclass metamorphic malware detection and
achieves detection accuracy of 99.5 per cent.

Keywords: Bi normal separation, control flow graph, machine learning, malware detection

Received 16 December 2015, revised 28 January 2016, online published 22 March 2016

KAPOOR & DhAVAlE: TITlE CONTROl FlOw GRAPh BASED MUlTIClASS MAlwARE DETECTION USING BI NORMAl SEPARATION

139

behaviour and applied machine learning methods for malware
detection. Igor5, et al. used static analysis to extract opcode
sequences in the order of their appearance in a decompiled
executable.

 Zhao7, et al. has extracted all opcode sequences from
basic blocks of an executable. They separated a decompiled
executable into basic blocks, and then extracted the opcode
sequences from basic blocks. These opcode sequences were
used to represent program behaviour and the authors used
machine learning to detect malware. however, as the basic
blocks were only considered and not the execution order
among these basic blocks, the control flow information was
not captured in its entirety8.

Ding8, et al., considered opcode sequences from all
execution paths (path from root to leaf) and extracted n-grams
from the opcode stream. For feature extraction, unique n-grams
are used as features. Machine learning is used to detect malware
by using document frequency threshold for feature selection.
Their malware detection model is designed for binary class
detection wherein the files get classified as malware or benign.
This may not completely useful in the real world scenario
where the user has to be informed of the type as well as the
family of the malware, to help identify the potential source of
infection and also to detect the newer variant of an existing
malware.

 Forman9, proposed the use of Bi normal separation as a
feature selection metric for text classification. BNS is used for
feature scaling for text classification10. The experimental results
showed that use of BNS provided better results over TF-IDF
for text classification especially in skewed class datasets where
number of samples for one class was very large as compared to
the samples in the other class.

Authors research closely follows the work of Ding8, et
al. and employs the use of BNS for feature scoring and using
chi-square test for feature selection to detect malware families.
This helps in to differentiate between the families and detect
unknown variant of a known malware. They concentrated their
efforts towards detecting malware in the windows OS.

3. ProPoSEd ModEL
The proposed multiclass malware detection system

consists of training and testing phase as shown in Fig. 1.

3.1 disassembly of Executable
Before any executable file is analysed, it needs to be

disassembled first. We used IDA Pro15, a commercially available
recursive loop disassembler to disassemble the executable.
Since, static analysis cannot be done on packed files, we need
to check whether the file is packed i.e. either compressed or
encrypted or both, as a packed file will reveal no information.
we used PEId software16, to check for packing as well as the
type of packer used. If a file is found to be packed, it is first
unpacked using corresponding unpacker eg UPX17, before it is
disassembled.

3.2 control Flow Graph Extraction
Most of the programs including malware run by executing

instructions, making API calls, calling subroutines and making

changes to the system, either temporary or permanent. The
instructions executed by a program can be broadly classified
based on the type of actions being performed by them,
some move data between various locations, some carry out
mathematical operations while some transfer the control
between different blocks of code. The class of instructions that
transfers the control between different blocks of code within
the program helps in creation of control flow graphs.

Proposed system uses IDA pro to disassemble the file and
generate the control flow graph of the executable with each
basic block having a unique block id, start and end addresses
and its successors if any. Generated CFG represents all paths
which can be traversed through a program during execution
and is a weighted directed graph. It contains nodes and edges,
where each node contains the instructions to be executed while
edges denote the transfer of control between two blocks of
code. If control can be passed from one node to another, then
there exists an edge between the two nodes with direction of
the edge indicating the flow of control.

Each node in the control flow graph is known as a basic
block. A basic block has the property of having single entry
and exit points. It implies that if the first instruction of the basic
block is executed then all the instructions of the block will be
executed sequentially. Figure 2 shows a portion of the control
flow graph of calculator program (benign file) from the system
32 folder of windows 7 OS.

By analysing the control flow graph, we can capture the
behaviour of an executable. After a file has been disassembled,

Figure 1. Flow chart of proposed model.

DEF. SCI. J., VOl. 66, NO. 2, MARCh 2016

140

the control flow information needs to be extracted. The
information is extracted from IDA Pro using a custom script
written in Python which accesses IDA Pro APIs to extract the
information which includes unique id of each basic block, its
start and end addresses, all the instructions contained in the
basic blocks and its successor blocks. Once the information
about the basic block is extracted, a tree is created to depict
its control flow and all possible execution traces recorded.
It is important to avoid loops as considering loops will lead
to indefinitely long execution paths. Capturing all possible
execution traces provides us the correct behaviour of the
executable. These execution traces are then concatenated and
saved as the execution profile of the executable. A data structure
is used to store basic block information as shown below:

()
()
()

(int)
(int)

BlockID Numeric
StartAddr Hex

ClassTreeNode EndAddr Hex
LeftChild Po er

RightChild Po er

 
 
  
 
 
 
  

The Tree Nodes stores BlockID, which is the unique ID
for each Basic block of the executable. StartAddr and EndAddr
store the starting and end address of the particular basic block.
LeftChild and RightChild store the pointers to the successor
nodes, if any of that block. Besides these, certain methods were
defined to initialise the node with the relevant information, a
method to read all the instructions and a method to store the
pointers to the successor nodes.

To extract the control flow and all the possible execution
traces a modified depth-first tree traversal algorithm is used
which apart from storing all the traversed nodes also carried out
the check for loops and discard them as and when encountered.
The pseudo code is depicted as Algorithm 1.

1:Algorithm ExtractExecutionPath
: ()NodeInput Start Basic BlockID

: ()Output ArrayofExecutionTrace Basic BlockIDs
: [], [], []ExecPath ExecPathDefineArrays Stack Curr Total

Algorithm :

1. 0Counter =
2. NodePush Start on Stack
3. !While Stack Empty do=
4. Pop Stack
5. ExecPath ExecPathCurr Curr Basic BlockID= ∪
6. 1Counter Counter= +
7. () ExecPathIf Exists RightChild and RightChild Curr⊄
8. Push RightChild on Stack
9. Len LenPath Path Counter= +
10. endif
11. () ExecPathIf NotExists LeftChild and LeftChild Curr⊂
12. ExecPath ExecPath ExecPathTotal Total Curr= +
13. _ _ _ _ExecPathDelete nodes from Curr till last added RightChild
14. _Adjust Counter
15. () ExecPathElseif Exists LeftChild and LeftChild Curr⊄
16. Push LeftChild on Stack
17. endif
18. endwhile
19. ExecPathReturn Total

Figure 3 shows the basic block IDs of the execution
trace of sample control flow graph. All the execution paths
are concatenated. The numbers shown are the IDs of the basic
blocks executed in order

Figure 2. Control flow graph of calc.exe.

Figure 3. Execution trace of calc.exe shown by basic block
Ids.

Figure 4. opcode sequences extracted from the execution
trace.

The opcode sequence trace are extracted from the
execution trace by traversing through each basic block in the
order of its execution as extracting all the while discarding
any operands as shown in Fig. 4. The process of extracting the
complete execution trace is computationally intensive which
requires machine with good processing capabilities.

3.3 Feature Extraction
Manning11, et al. had proposed the use of n-grams as

features and the same is a widely used technique in natural
language processing as well as document classification.
n-gram method means selecting a group of words as features
for classification or sentiment analysis with n representing the
number of words in each feature. 3-grams (trigrams) as for
features as experimentally shown to be most effective8. For

KAPOOR & DhAVAlE: TITlE CONTROl FlOw GRAPh BASED MUlTIClASS MAlwARE DETECTION USING BI NORMAl SEPARATION

141

feature extraction we use sliding window approach, as used by8
and generate the trigrams, Figure 5. Each of these trigrams is a
feature with all the trigrams of an executable being the feature
vector. Two different approaches for feature set are used. In
the first approach all trigrams from the execution trace were
considered and in the second approach only the unique trigrams
were taken. These extracted trigrams form text documents for
corresponding malwares.

1 or 0, hence they are restricted between 0.0005 and 1-0.0005
as proposed9,10.

Term frequency-inverse document frequency (tfidf),
is a numerical statistic to find out how important a word is
in a set of documents. It is obtained by multiplying the term
frequency of the feature with the inverse of its document
frequency and is given by the Eqn. (3):

() (,) (,)i i j itfidf f tf f d idf f D= × (3)

where

 (,)i jtf f d Number of times a feature is present in the
document jd .

 (,)iidf f D Inverse of the document frequency given by

 log N
D

 
 
 

 N Total number of documents.
 D Number of documents in which feature if is present.

Term frequency Bi-normal separation (TF.BNS)
proposed10, is calculated by multiplying the term frequency of
the feature with its BNS score as given in Eqn. (4):

. () (,) ()i i j iTF BNS f tf f d BNS f= × (4)

Ding8, et al. used DF for feature scoring and selected
the top features based on document frequency score for each
class after filtering out any features common to both classes.
In our view, mere presence of a feature in different classes
is not enough for it to be discarded and may lead to loss of
some good features. we assign score to each feature and use an
independent metric for feature selection. This has shown good
results in the classification results.

3.5 Feature Selection
Feature selection is carried out to convert the feature set to

a manageable size and reduce the dimensionality of the features
set to remove redundant and noisy feature which reduce the
performance of the classification. Here, we carry out feature
selection via filtering and have used two feature selection
metrics which are commonly used. They are defined as:

Information gain (IG), gives out the decrease on entropy
for any feature caused due to it being present or absent
in a document class and is widely used as feature selection
metric7,8,13. It is given by Eqn. (5):

|
0 {0,1} 0

| |
(,) ln ln

| |
j jq

m j i i ii q i

C
IG f C C C C C

C= = =
= − − −∑ ∑ ∑

 (5)
where
 mf thm feature.
 C Number of documents.
 j Number of classes.
 iC Number of documents belonging to class i.
 |qC Number of documents containing the feature mf
 iC Number of documents of class i containing mf .
 q Presence or absence of a feature. It can be either 0 if

absent or 1 if present.
Chi-Square (χ2) test : The 2χ test is used to test the

Figure 5. Extracted 3-grams to be used as features.

3.4 Feature Scoring
Before classification, these documents need to be

converted from text form to vector space representation in
matrix form where each row represents a document and each
column represents the features. The total number of columns is
the total number of features extracted from the documents.

To enable classifier to effectively differentiate between
the various classes, feature scaling is done to give a numerical
value to each of these features. Various techniques are used
for feature scaling. Some of the techniques are defined as
follows.

Document frequency (DF) of a feature fives the number of
documents the feature occurs in a class of documents12, and is
given by the Eqn. (1):

lg
(,)

lg
p

i j
j

C
DF f C

C
= (1)

where (,)i jDF f C is document frequency of the thi feature in
thj class of documents, Cp: Number of documents of class j,

which contain the feature.
jC : Number of documents of class j,

i : index of the feature extracted (),i N N∈ is the total number of
features. j : Number of classes ie. Benign and different malware
families.

Bi-normal separation (BNS) measures the importance
of a feature based on its presence in different classes of
documents9,10 and is given by Eqn. (2):

1

1 1() p N
i

j j

C C
BNS f F F

C C −

− −
  
 = −       

 (2)

where 1F − is the inverse cumulative probability function of
standard normal distribution.

p

j

C
C

 
  
 

: True positive rate for a feature.

1

N

j

C
C −

 
 
 
 

: False positive rate for the feature.

Since BNS scores are calculated over binary classes, one
vs rest all classes approach to signify positive and negative
classes is used. It is important to note that the BNS score will
tend to ∞ if either of the true positive rate or false rate becomes

DEF. SCI. J., VOl. 66, NO. 2, MARCh 2016

142

independence of two variables. The 2χ test measures the
independence of a feature and a category. Features with the
higher 2χ values are less independent for a category, and
bound to perform better for classification13. It is given by the
Eqn. (6). 2

2
1

()
() n i i

i i
i

O E
f

E=

−
χ = ∑ (6)

where iO is observed value of feature i, iE is expected value
of feature i.

3.6 training and testing
The detection method uses machine learning for

classifying a file into benign or the respective malware family.
The process consists of two steps: training and testing. In the
training phase, the classifier requires to be trained to be able to
differentiate between malware and benign files and involves
using a training dataset of feature vectors to be used alongwith
the class labels for building the classification model. In the
testing phase, unlabelled dataset is passed to trained model to
evaluate the performance of the classification model.

 For the purpose of evaluating our approach, we used two
different techniques for training and testing the classifiers. In
the first approach we split up the dataset set into training and
testing dataset with 80 per cent samples being used to train
the classifier and rest 20 per cent for testing the classifier. We
also used 10 fold cross validation where the entire dataset is
randomly split up into 10 blocks with 9 blocks being used for
training and the remaining block used for testing. This is then
repeated 10 times.

We use multiple classifiers in our research. Some of the
classifiers are as follows:

Naïve Bayes Classifier: It uses probabilistic methods to
assign classes to a document and is used in fields of information
retrieval, text classification. We used two algorithms for
the classifier using Gaussian distribution and multinomial
distribution1.

Support Vector Machines14: They are non-probabilistic
classifiers and used binary classification. We used one vs rest
approach for multiple class classification as well as two class
classification. Support Vector Machines (SVM) classify by
representing features as points in multidimensional space and
then separates out the different classes using maximum margin
hyperplanes. We used three kernel functions for the SVM and
include linear, polynomial and radial basis function.

Random Forest Tree Classifier (RF Tree): It is an ensemble
classifier which classifies by creating multitude of decision
trees with features selected randomly from the feature space.
we implemented our approach using python and made use of
sklearn21, machine learning package of python. To compare the
results with Ding8, et al, a well-known data mining tool Weka18
was used.

4. EXPErIMEntAtIon
4.1 Experimental Setup

To check the effectiveness of proposed method a number of
experiments were carried on a machine with Intel i5 processor
@ 3.1GHz clock speed, with 4GB RAM and windows 7 OS
with Weka and Python interpreter installed.

4.2 data Set collection
 For the experimentation, we collected 266 files from the

system 32 folder of a freshly installed win 7 OS. The files were
checked for any infection by uploading them to virustotal.com
which checks the files uploaded using a number of antivirus
software. The 133 malware samples were downloaded from
vxheavens19 and openmalware20 repositories. The samples
consisted of metamorphic virus, worms and generic Trojan
agents. Two datasets were created for the experimentation.
Dataset1 consisted of 266 benign and 105 metamorphic
malware samples belonging to different families and Dataset2,
created to check the performance of the proposed model against
generic malware included generic Trojans apart from those in
Dataset1.

4.3 Evaluation criteria
Both 10 fold cross validation as well standard split dataset

techniques to measure the performance of the proposed model
using BNS against DF for feature scaling were employed.
Cross validation was done primarily to compare results of our
model with the model proposed by Ding8, et al.

The performance of classifier was measured using three
metric: accuracy, precision and recall. The same are defined
as follows.

Accuracy: It is the ratio of correct results against the total
results and calculated using Eqn. (7):

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (7)

Precision: Also known as positive predictive value, it
gives ability of the classifier to correctly label the positive
classes. It is calculated using Eqn. (8).

TPPrecision
TP FP

=
+

 (8)

Recall: It gives the sensitivity of the classifier and signifies
the ability of the classifier to find all positive samples. It is
calculated using the Eqn. (9).

TPRecall
TP FN

=
+

 (9)

where TP is number of positive classes correctly classified as
positive, FP is number of negative classes incorrectly classified
as positive, TN is number of negatives classes correctly
classified as negative, FN is number of negatives classes
incorrectly classified as positive.

4.4 Experimental results
The malware detection method explained in Section 3

was implemented in python language. As mentioned earlier,
we created two datasets for evaluating our approach. Extracted
the features using the technique similar to Ding8, et al. From
the execution trace, extracted all trigrams as well as unique
trigrams. The dataset containing all trigrams was used for
calculation of TF.BNS and TF-IDF scores, while unique
trigrams were used for calculation of BNS and DF scores.

Ding8, et al. had selected features based on information
gain (IG) and DF threshold. Classification results obtained

KAPOOR & DhAVAlE: TITlE CONTROl FlOw GRAPh BASED MUlTIClASS MAlwARE DETECTION USING BI NORMAl SEPARATION

143

when using IG, DF threshold, and Chi-square test as feature
selection technique are compered. Tables 1 - 3 show the average
accuracy, precision and recall rates from different classifiers
on Dataset1 over 5 iterations when using 80 per cent of the
data set for training and 20 per cent for testing. we used chi
square test for feature selection when using TF-IDF, TF.BNS,
BNS and IG, Chi-square and DF threshold when using DF.
The classifiers were trained and tested on different number
of features to evaluate the performance of the classifier when
using different number of features.

 In the Tables 1 - 3; GNB, MNB, lSVC, PSVC, RBF and
RF depict the classifiers Gaussian Naïve Bayes, Multinomial
Naïve Bayes, Linear SVM, Polynomial SVM, SVM using
Radial Basis function, and Random forest trees. The rates
shown are expressed in percentage.

GnB MnB LSVc PSVc rBF rF
TF.IDF 98.02 81.44 99.61 68.85 68.85 93.37
TF.BNS 98.36 74.42 99.9 68.85 99.71 98.71
BNS 98.7 98.46 99.54 90.28 99.41 98.73
DF-IG 93.64 94.49 93.18 86.20 92 91.03
DF-ChI 93.67 94.8 93.41 86.76 91.78 90.88
DF 90.14 94.2 94.36 80.28 80.28 94.36

table 1. Accuracy rates for dataset1

table 2. Precision rates for dataset1

GnB MnB LSVc PSVc rBF rF
TF.IDF 98.22 82.45 99.64 47.41 47.41 98.34
TF.BNS 98.99 70.85 99.9 68.85 94.73 98.24
BNS 98.85 99.12 99.57 91.60 99.17 98.76
DF-IG 95.5 95.3 93.8 89.2 92.88 92.08
DF-ChI 95.2 95.25 94 88.9 92.69 91.99
DF 90.14 94.9 94.7 80.3 64.5 94.7

table 3. recall rates for dataset1

GnB MnB LSVc PSVc rBF rF
TF.IDF 98.02 81.44 99.61 68.85 88.85 98.37
TF.BNS 98.36 74.42 99.9 68.85 94.71 98.17
BNS 98.70 98.46 99.54 90.28 99.11 98.73
DF-IG 93.67 95 93.16 87.26 92.02 91.01
DF-ChI 93.65 94.87 93.42 86.78 91.8 91.3
DF 90.10 94.2 94.4 64.5 80.3 94.4

GnB MnB LSVc PSVc rBF rF
TF-IDF 90.70 73.26 92.94 52.86 70.04 89.10
TF.BNS 92.58 63.24 92.81 52.86 87.89 89.19
BNS 91.34 91.17 91.86 85.10 91.28 89.30
DF-IG 87.50 89.71 87.90 60 84.52 87.71
DF-ChI 86.30 89.99 87.71 60.57 84.85 87.90
DF 81.4 90.1 88.57 60 60 88.57

table 4. Accuracy rates for dataset2

table 5. Precision rates for dataset2

GnB MnB LSVc PSVc rBF rF
TF-IDF 94.49 75.28 93.18 27.94 63.33 90.80
TF.BNS 93.92 56.22 93.64 27.94 90.19 90.70
BNS 92.45 91.18 92.91 88.40 92.51 91.3
DF-IG 92.6 90.82 86.50 36 82.60 86.7
DF-ChI 91.81 91.59 86.24 36.9 81.2 86.84
DF 82.5 90 88.57 36 36 87.5

table 6. recall rates for dataset2

GnB MnB LSVc PSVc rBF rF
TF-IDF 90.70 73.26 92.24 52.86 70.04 89.10
TF.BNS 92.58 63.24 92.81 82.86 87.89 89.25
BNS 91.34 91.17 91.86 85.10 91.28 89.35
DF-IG 87.5 89.69 87.90 60 84.67 87.72
DF-ChI 86.45 89.57 87.41 54.18 84.86 87.1
DF 81.4 90.1 88.1 60 60 88.6

TF-IDF, TF.BNS, and BNS with chi-square feature
selection gave best results with linear SVM giving accuracies
of 99.61 per cent, 99.9 per cent, and 99.54 per cent, respectively
with similar precision and recall rates, while DF with IG,
chi-square and threshold as frequency selection metrics had
best results with Multinomial Naïve Bayes classifier, giving
accuracy results of 94.49 per cent, 94.8 per cent, and 94.2 per
cent.

Tables 4 - 6 show the accuracy precision and recall rates
for the same classifiers on Dataset2.

 The performance for all feature scoring techniques dipped

for Dataset2 due to addition of generic malware Trojans which
did not belong to any family. however, TF-IDF, TF.BNS
and BNS still performed better than DF by around 3 per cent
improvement in accuracy rates.

It can be seen, that TF-IDF and TF.BNS showed slightly
better results as compared to BNS and DF. however, they both
suffer from additional computational and storage overheads
incurred while storing and processing all the trigrams present.
hence, it is recommended to use only unique trigrams extracted.
For the next set of experimentation by means of 10 fold cross-
validation, we used only BNS and DF for classification tests.
Figures 6 and 7 give the accuracy rates for BNS using chi square
test for feature selection and DF scoring using DF threshold for
feature selection8, using Gaussian Naïve Bayes, Linear SVM,
SVM with radial basis function as kernel functions for dataset1
and dataset2, respectively.

It is seen from the figures above that BNS has performed
consistently better than DF for multi-class malware
detection, with average accuracies for BNS with GNB,
lSVC and RBF being 97.38 per cent, 95.9 per cent, and
96.9 per cent, respectively for Dataset1 and 90.93 per cent,
92.33 per cent, and 93.2 per cent, respectively for Dataset2.
Yuxin8, et al. had developed the model for only binary
class classification. Our model when tested on binary class
classification with all malwares combined into a single class
gave average accuracy rates of 99.2 per cent with Gaussian

DEF. SCI. J., VOl. 66, NO. 2, MARCh 2016

144

Naïve Bayes and SVM classifiers, indicating that most of
misclassifications in our took place between different malware
classes. The same was also confirmed by analysis of the
confusion matrix generated at each stage.

The learning curves for Gaussian Naïve Bayes and Linear
SVM classifiers for the experiments involving BNS as feature
scoring technique are shown by Figs. 8 and 9, respectively.
Both the curves show that the classifiers have been trained
and the test accuracy scores will improve as more samples are
added. This will result in further improvement in detection
accuracy as the number of malware samples increases.

5. concLuSIonS
Existing CFG and Opcodes Sequence based malware

detection methods either cannot accurately describe the
behaviors of the original executables or based on binary
classification only. In this research paper, we have proposed
an automated multiclass malware detection method using
opcodes generated from CFGs and BNS for feature scoring.
Our experimental results show an improvement of up to 4 per
cent in accuracy, precision and recall rates over DF when tested
over multiple classifiers. The proposed detection model also
showed accuracy rates of 99.2 per cent for two class malware
detection when using Gaussian Naïve Bayes and Support Vector
Machines, which is much higher than what could be achieved
using Document Frequency. The technique of scoring features
performs better for classification than the filtering method of
removing any features common to different classes of samples.
Besides good performance, our proposed model achieves
automatic classification of unknown malware samples into
candidate families. This feature could be remarkably useful
for malware analysts. Proposed method is bounded by the
limitations that of any static detection technique.

rEFErEncES
1. Schultz, M.; Eskin, E.; Zadok, E. & Stolfo, S. Data mining

methods for detection of new malicious executables. In
Proceedings of the IEEE Symposium on Security and
Privacy, los Alamitos, CA, 2001. pp.38–49.

 doi: 10.1109/SECPRI.2001.924286
2. Kolter Jeremy, Z. & Marcus, Maloof. learning to detect

malicious executables in the wild. In Proceedings of
the 10th ACM SIGKDD International Conference on
Knowledge discovery and data mining, 2004, pp.470-
478,

 doi:10.1145/1014052.1014105
3. Bruschi, Danilo; lorenzo, Martignoni & Mattia, Monga.

Detecting self-mutating malware using control-flow
graph matching. In Proceedings of the Third international
conference on Detection of Intrusions and Malware &
Vulnerability Assessment, Springer Berlin heidelberg,
2006, pp.129-143.

 doi:10.1007/11790754_8

Figure 6. comparative accuracy rates for dataset1.

Figure 7. comparative accuracy rates for dataset2.

Figure 9. Learning curve for Linear SVM classifier.

TRAINING EXAMPLES

SC
O

R
E

Figure 8. Learning curve for Gaussian Naïve Bayes classifier.

TRAINING EXAMPLES

SC
O

R
E

KAPOOR & DhAVAlE: TITlE CONTROl FlOw GRAPh BASED MUlTIClASS MAlwARE DETECTION USING BI NORMAl SEPARATION

145

4. Bilar, D. Opcodes as predictor for malware. Int. J.
Electron. Security Digital Forensics, 2007, 1(2), 156-
168,

 doi:10.1504/IJESDF.2007.016865
5. Santos, Igor; Felix, Brezo; Xabier & Pablo, G. Opcode

sequences as representation of executables for data-
mining-based unknown malware detection. Info. Sci. J.,
2013, 231, 64-82.

 doi:10.1016/j.ins.2011.08.020
6. Moskovitch, Robert; Clint, F.; Nir, T.; Eugene, B. Marina,

G.; Shlomi, D. & Yuval, E. Unknown malcode detection
using OPCODE representation. In Proceedings of the
1st European Conference on Intelligence and Security
Informatics. Springer Berlin heidelberg, 2008, pp.204-
215.

 doi:10.1007/978-3-540-89900-6_21
7. Zhao, Zongqu; Junfeng, wang & Jinrong, Bai. Malware

detection method based on the control-flow construct
feature of software. IET Info., 2014, 8(1), 18-24.

 doi: 10.1049/iet-ifs.2012.0289
8. Ding, Yuxin; wei, D; Shengli, Y. & Yumei, Z. Control

flow-based opcode behavior analysis for Malware
detection. Comput. Security, 2014, 44, 65-74.

 doi: 10.1016/j.cose.2014.04.003
9. Forman, George. An extensive empirical study of feature

selection metrics for text classification, The Journal of
machine learning research, 2003, 3, 1289-1305.

10. Forman, George. BNS feature scaling: an improved
representation over tf-idf for svm text classification. In
Proceedings of the 17th ACM conference on Information
and knowledge management. ACM, 2008, pp. 263-270.

 doi:10.1145/1458082.1458119
11. Manning, Christopher D. and hinrich Schutze.

Foundations of statistical natural language processing.
MIT press, 1999.

 doi:10.1017/S1351324902212851
12. Salton, Gerard, and Christopher, Buckley. Term-

weighting approaches in automatic text retrieval. Info.
Process. Manag., 1988, 24(5), 513-523.

 doi:10.1016/0306-4573(88)90021-0
13. Furnkranz, Johannes; Tom, Mitchell & Ellen, Riloff. A

case study in using linguistic phrases for text categorization
on the www. In the Working Notes of the AAAI/ICML,
Workshop on Learning for Text Categorization. 1998.

14. Amari, Shun-ichi & Si, wu. Improving support vector
machine classifiers by modifying kernel functions, Neural
Networks, 1999, 12(6), 783-789.

15. hex Rays IDA Interactive DisAssembler, http:// www.
hex-rays.com (Accessed on 15 Jan 2015).

16. PEiD, http://www.peid.info (Accessed on 15 April
2015).

17. UPX ultimate packer for executables, http://upx.sf.net
(Accessed on 01 May 2015).

18. Weka data mining software, http://www.cs.waikato.ac.nz/
ml/weka (Accessed on 05 May 2015).

19. VX Heaven, http://www. vxheaven.org (Accessed on 19
March 2015).

20. Open Malware Georgia Tech Information Security
Center, http://www.oc.gtisc.gatech.edu:8080/ (Accessed
on 19 March 2015).

21. Scikit Learn - Machine Learning in Python, http://www.
scikit-learn.org (Accessed on 15 April 2015).

AcKnoWLEdGEMEntS
We would like to say thanks to DIAT, Pune for providing

necessary labs to carry out our experiments. We also thank
to Mrs Deepti Vidyarthi, Assistant Professor, DIAT, Pune for
helping us to get malware dataset for our experiments.

contrIButorS

Mr (Maj.) Akshay Kapoor has received MTech (Cyber Security)
Defence Institute of Technology, Pune, in 2015. his research
interests include: Malware analysis and cyber security.
In the current study, he has proposed the idea partially and
implemented the technique in python.

dr Sunita Vikrant dhavale has received MTech (Computer
Engineering) from VIT, Pune, in 2009 and PhD from Defence
Institute of Technology, Pune, in 2015. her research interests
include: Information security, steganography, multimedia security
and malware analysis.
In the current study, she helped him to get novelty in the
proposed system with significant contribution in writing
present paper. Under her valuable guidance the work has
been implemented.

