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1. IntroductIon
Malware is an all-encompassing term which encapsulates 

all program created with intent to cause harm to computer 
systems and includes viruses, worms, trojans among others. 
The loss caused to the computer systems and their users 
due to these malware can be in the form of loss of sensitive 
information, system downtime, reduced performance and loss 
of reputation.

Most of the antivirus softwares use signature based 
techniques for malware detection that involves matching the 
files to be checked for infection against a database containing 
the malware signatures. This requires a signature to be generated 
for each malware and can be easily evaded. The newest forms 
of malware employ code obfuscation techniques such as 
register renaming, code reordering, instruction replacement, 
garbage code insertion and semantic nops which change the 
signature of the malware while keeping the intended functions 
intact. This helps the malware to evade the antivirus software 
and continue spreading till such time its signature is generated. 
These types of malwares are called as metamorphic malware 
and have metamorphing engines built in their code allowing 
the malware to create multiple variants of it. Detection of 
metamorphic malwares is still an open challenge.

To overcome the challenges posed by metamorphic 
malware, research has been done for their detection through 
various techniques. Some of these techniques focused on 
API calls, some on function calls made by malware while 
some used control flow graphs. All these techniques can 
be broadly classified into dynamic and static detection 
techniques. Dynamic detection techniques involve executing 
the malware in a protected environment and examining its run-
time behaviour. The focus is on analysis of API calls made, 
actions being taken by the malware such as create process, 

registry changes, file changes etc. Such detection techniques 
can examine packed or polymorphic malware. Static detection 
techniques involve examining the malware without executing 
the program. Static detection analyse the content using header 
information, control flow graphs, opcodes and API call graphs 
etc and ensures complete code coverage and can reveal all 
possible actions a malware may carry out; while dynamic 
detection will only reveal information about what the malware 
is doing at that time. Existing CFG and Opcodes sequence 
based malware detection methods either cannot accurately 
describe the behaviours of the original executables or based on 
binary classification only. The remarkable growth in malware 
and benign apps needs automated analysis of potentially 
dangerous apps to aid malware analysts. In the real world 
scenario, it would be extremely helpful to be informed of the 
type as well as the family of the malware. The groupings of the 
samples into families in turn help to establish the relationships 
among them, identify the potential source of infection, detect 
the newer variants and study the advancement of the a variety 
of known malwares.

2. rELAtEd WorK
Use of machine learning technique for malware detection 

was proposed by Schultz1, et al. Their experimental results 
indicated to achieve good detection rates compared to the 
traditional signature based methods. Kolter2, et al. improved the 
results by using n-grams of the opcode sequences as features 
which are extracted from executables. Bruschi3, et al. first 
proposed the use of CFG for detection of self-mutating malware 
along with graph matching techniques. Bilar4, et al. proposed 
malware detection method based on opcode distributions in 
malware and benign which differed significantly. Igor5, et al. 
and Robert6, et al. used opcode sequences to represent program 
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behaviour and applied machine learning methods for malware 
detection. Igor5, et al. used static analysis to extract opcode 
sequences in the order of their appearance in a decompiled 
executable. 

 Zhao7, et al. has extracted all opcode sequences from 
basic blocks of an executable. They separated a decompiled 
executable into basic blocks, and then extracted the opcode 
sequences from basic blocks. These opcode sequences were 
used to represent program behaviour and the authors used 
machine learning to detect malware. however, as the basic 
blocks were only considered and not the execution order 
among these basic blocks, the control flow information was 
not captured in its entirety8. 

Ding8, et al., considered opcode sequences from all 
execution paths (path from root to leaf) and extracted n-grams 
from the opcode stream. For feature extraction, unique n-grams 
are used as features. Machine learning is used to detect malware 
by using document frequency threshold for feature selection. 
Their malware detection model is designed for binary class 
detection wherein the files get classified as malware or benign. 
This may not completely useful in the real world scenario 
where the user has to be informed of the type as well as the 
family of the malware, to help identify the potential source of 
infection and also to detect the newer variant of an existing 
malware. 

 Forman9, proposed the use of Bi normal separation as a 
feature selection metric for text classification.  BNS is used for 
feature scaling for text classification10. The experimental results 
showed that use of BNS provided better results over TF-IDF 
for text classification especially in skewed class datasets where 
number of samples for one class was very large as compared to 
the samples in the other class.

Authors research closely follows the work of Ding8, et 
al. and employs the use of BNS for feature scoring and using 
chi-square test for feature selection to detect malware families. 
This helps in to differentiate between the families and detect 
unknown variant of a known malware. They concentrated their 
efforts towards detecting malware in the windows OS.

3. ProPoSEd ModEL 
The proposed multiclass malware detection system 

consists of training and testing phase as shown in Fig. 1.

3.1 disassembly of Executable
Before any executable file is analysed, it needs to be 

disassembled first. We used IDA Pro15, a commercially available 
recursive loop disassembler to disassemble the executable. 
Since, static analysis cannot be done on packed files, we need 
to check whether the file is packed i.e. either compressed or 
encrypted or both, as a packed file will reveal no information. 
we used PEId software16, to check for packing as well as the 
type of packer used. If a file is found to be packed, it is first 
unpacked using corresponding unpacker eg UPX17, before it is 
disassembled. 

3.2 control Flow Graph Extraction
Most of the programs including malware run by executing 

instructions, making API calls, calling subroutines and making 

changes to the system, either temporary or permanent. The 
instructions executed by a program can be broadly classified 
based on the type of actions being performed by them, 
some move data between various locations, some carry out 
mathematical operations while some transfer the control 
between different blocks of code. The class of instructions that 
transfers the control between different blocks of code within 
the program helps in creation of control flow graphs.

Proposed system uses IDA pro to disassemble the file and 
generate the control flow graph of the executable with each 
basic block having a unique block id, start and end addresses 
and its successors if any. Generated CFG represents all paths 
which can be traversed through a program during execution 
and is a weighted directed graph. It contains nodes and edges, 
where each node contains the instructions to be executed while 
edges denote the transfer of control between two blocks of 
code. If control can be passed from one node to another, then 
there exists an edge between the two nodes with direction of 
the edge indicating the flow of control.

Each node in the control flow graph is known as a basic 
block. A basic block has the property of having single entry 
and exit points. It implies that if the first instruction of the basic 
block is executed then all the instructions of the block will be 
executed sequentially. Figure 2 shows a portion of the control 
flow graph of calculator program (benign file) from the system 
32 folder of windows 7 OS.

By analysing the control flow graph, we can capture the 
behaviour of an executable. After a file has been disassembled, 

Figure 1.   Flow chart of proposed model.
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the control flow information needs to be extracted. The 
information is extracted from IDA Pro using a custom script 
written in Python which accesses IDA Pro APIs to extract the 
information which includes unique id of each basic block, its 
start and end addresses, all the instructions contained in the 
basic blocks and its successor blocks. Once the information 
about the basic block is extracted, a tree is created to depict 
its control flow and all possible execution traces recorded. 
It is important to avoid loops as considering loops will lead 
to indefinitely long execution paths. Capturing all possible 
execution traces provides us the correct behaviour of the 
executable. These execution traces are then concatenated and 
saved as the execution profile of the executable. A data structure 
is used to store basic block information as shown below:

( )
( )
( )

( int )
( int )

BlockID Numeric
StartAddr Hex

ClassTreeNode EndAddr Hex
LeftChild Po er

RightChild Po er

 
 
  
 
 
 
  

The Tree Nodes stores BlockID, which is the unique ID 
for each Basic block of the executable. StartAddr and EndAddr 
store the starting and end address of the particular basic block. 
LeftChild and RightChild store the pointers to the successor 
nodes, if any of that block. Besides these, certain methods were 
defined to initialise the node with the relevant information, a 
method to read all the instructions and a method to store the 
pointers to the successor nodes.

To extract the control flow and all the possible execution 
traces a modified depth-first tree traversal algorithm is used 
which apart from storing all the traversed nodes also carried out 
the check for loops and discard them as and when encountered. 
The pseudo code is depicted as Algorithm 1.

1:Algorithm ExtractExecutionPath
: ( )NodeInput Start Basic BlockID

: ( )Output ArrayofExecutionTrace Basic BlockIDs
: [], [], []ExecPath ExecPathDefineArrays Stack Curr Total

Algorithm :

1. 0Counter =
2. NodePush Start on Stack
3. !While Stack Empty do=
4. Pop Stack
5. ExecPath ExecPathCurr Curr Basic BlockID= ∪
6. 1Counter Counter= +
7. ( ) ExecPathIf Exists RightChild and RightChild Curr⊄
8. Push RightChild on Stack
9. Len LenPath Path Counter= +
10. endif
11. ( ) ExecPathIf NotExists LeftChild and LeftChild Curr⊂
12. ExecPath ExecPath ExecPathTotal Total Curr= +
13. _ _ _ _ExecPathDelete nodes from Curr till last added RightChild
14. _Adjust Counter
15. ( ) ExecPathElseif Exists LeftChild and LeftChild Curr⊄
16. Push LeftChild on Stack
17. endif
18. endwhile
19. ExecPathReturn Total

Figure 3 shows the basic block IDs of the execution 
trace of sample control flow graph. All the execution paths 
are concatenated. The numbers shown are the IDs of the basic 
blocks executed in order

Figure 2.  Control flow graph of calc.exe.

Figure 3. Execution trace of calc.exe shown by basic block 
Ids.

Figure 4. opcode sequences extracted from the execution 
trace.

The opcode sequence trace are extracted from the 
execution trace by traversing through each basic block in the 
order of its execution as extracting all the while discarding 
any operands as shown in Fig. 4. The process of extracting the 
complete execution trace is computationally intensive which 
requires machine with good processing capabilities.

3.3 Feature Extraction
Manning11, et al. had proposed the use of n-grams as 

features and the same is a widely used technique in natural 
language processing as well as document classification. 
n-gram method means selecting a group of words as features 
for classification or sentiment analysis  with n representing the 
number of words in each feature. 3-grams (trigrams) as for 
features as experimentally shown to be most effective8. For 
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feature extraction we use sliding window approach, as used by8 
and generate the trigrams, Figure 5. Each of these trigrams is a 
feature with all the trigrams of an executable being the feature 
vector. Two different approaches for feature set are used. In 
the first approach all trigrams from the execution trace were 
considered and in the second approach only the unique trigrams 
were taken. These extracted trigrams form text documents for 
corresponding malwares.

1 or 0, hence they are restricted between 0.0005 and 1-0.0005 
as proposed9,10.

Term frequency-inverse document frequency (tfidf), 
is a numerical statistic to find out how important a word is 
in a set of documents. It is obtained by multiplying the term 
frequency of the feature with the inverse of its document 
frequency and is given by the Eqn. (3):

( ) ( , ) ( , )i i j itfidf f tf f d idf f D= ×                         (3)

where 

 ( , )i jtf f d  Number of times a feature is present in the 
document jd .

 ( , )iidf f D  Inverse of the document frequency given by  

 log N
D

 
 
 

 

 N  Total number of documents.
 D  Number of documents in which feature if  is present.

Term frequency Bi-normal separation (TF.BNS) 
proposed10, is calculated by multiplying the term frequency of 
the feature with its BNS score as given in Eqn. (4):

. ( ) ( , ) ( )i i j iTF BNS f tf f d BNS f= ×                                (4)

Ding8, et al. used DF for feature scoring and selected 
the top features based on document frequency score for each 
class after filtering out any features common to both classes. 
In our view, mere presence of a feature in different classes 
is not enough for it to be discarded and may lead to loss of 
some good features. we assign score to each feature and use an 
independent metric for feature selection. This has shown good 
results in the classification results.

3.5 Feature Selection 
Feature selection is carried out to convert the feature set to 

a manageable size and reduce the dimensionality of the features 
set to remove redundant and noisy feature which reduce the 
performance of the classification. Here, we carry out feature 
selection via filtering and have used two feature selection 
metrics which are commonly used. They are defined as:

Information gain (IG), gives out the decrease on entropy 
for any feature caused due to it being present or absent 
in a document class and is widely used as feature selection 
metric7,8,13. It is given by Eqn. (5):

|
0 {0,1} 0

| |
( , ) ln ln

| |
j jq

m j i i ii q i

C
IG f C C C C C

C= = =
= − − −∑ ∑ ∑  

  (5)
where   
   mf   thm feature.
    C   Number of documents.
    j   Number of classes.
   iC    Number of documents belonging to class i.
   |qC  Number of documents containing the feature mf
   iC   Number of documents of class i containing mf .
    q  Presence or absence of   a feature. It can be either 0 if 

absent or 1 if present.
Chi-Square (χ2) test : The 2χ test is used to test the 

Figure 5. Extracted 3-grams to be used as features.

3.4 Feature Scoring  
Before classification, these documents need to be 

converted from text form to vector space representation in 
matrix form where each row represents a document and each 
column represents the features. The total number of columns is 
the total number of features extracted from the documents.

To enable classifier to effectively differentiate between 
the various classes, feature scaling is done to give a numerical 
value to each of these features. Various techniques are used 
for feature scaling.  Some of the techniques are defined as 
follows.

Document frequency (DF) of a feature fives the number of 
documents the feature occurs in a class of documents12, and is 
given by the Eqn. (1):

lg
( , )

lg
p

i j
j

C
DF f C

C
=                                  (1)

where ( , )i jDF f C is document frequency of the thi feature in 
thj class of documents, Cp: Number of documents of class j, 

which contain the feature.
jC :  Number of documents of class j, 

i : index of the feature extracted ( ),i N N∈  is the total number of 
features.  j :  Number of classes ie. Benign and different malware  
families.

Bi-normal separation (BNS) measures the importance 
of a feature based on its presence in different classes of 
documents9,10 and is given by Eqn. (2):

1

1 1( ) p N
i

j j

C C
BNS f F F

C C −

− −
  
 = −       

                        (2)

where 1F − is the inverse cumulative probability function of 
standard normal distribution.

p

j

C
C

 
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 

:  True positive rate for a feature.

1

N

j

C
C −

 
 
 
 

:  False positive rate for the feature.

Since BNS scores are calculated over binary classes, one 
vs rest all classes approach to signify positive and negative 
classes is used. It is important to note that the BNS score will 
tend to ∞ if either of the true positive rate or false rate becomes 
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independence of two variables. The 2χ test measures the 
independence of a feature and a category. Features with the 
higher 2χ  values are less independent for a category, and 
bound to perform better for classification13. It is given by the 
Eqn. (6). 2

2
1

( )
( ) n i i

i i
i

O E
f

E=

−
χ = ∑                                        (6)

where iO  is observed value of feature i, iE is expected value 
of feature i.

3.6 training and testing 
The detection method uses machine learning for 

classifying a file into benign or the respective malware family. 
The process consists of two steps: training and testing. In the 
training phase, the classifier requires to be trained to be able to 
differentiate between malware and benign files and involves 
using a training dataset of feature vectors to be used alongwith 
the class labels for building the classification model. In the 
testing phase, unlabelled dataset is passed to trained model to 
evaluate the performance of the classification model.

 For the purpose of evaluating our approach, we used two 
different techniques for training and testing the classifiers. In 
the first approach we split up the dataset set into training and 
testing dataset with 80 per cent samples being used to train 
the classifier and rest 20 per cent for testing the classifier. We 
also used 10 fold cross validation where the entire dataset is 
randomly split up into 10 blocks with 9 blocks being used for 
training and the remaining block used for testing. This is then 
repeated 10 times.

We use multiple classifiers in our research. Some of the 
classifiers are as follows:

Naïve Bayes Classifier:  It uses probabilistic methods to 
assign classes to a document and is used in fields of information 
retrieval, text classification. We used two algorithms for 
the classifier using Gaussian distribution and multinomial 
distribution1.

Support Vector Machines14: They are non-probabilistic 
classifiers and used binary classification. We used one vs rest 
approach for multiple class classification as well as two class 
classification. Support Vector Machines (SVM) classify by 
representing features as points in multidimensional space and 
then separates out the different classes using maximum margin 
hyperplanes. We used three kernel functions for the SVM and 
include linear, polynomial and radial basis function.

Random Forest Tree Classifier (RF Tree): It is an ensemble 
classifier which classifies by creating multitude of decision 
trees with features selected randomly from the feature space. 
we implemented our approach using python and made use of 
sklearn21, machine learning package of python. To compare the 
results with Ding8, et al, a well-known data mining tool Weka18 
was used. 

4. EXPErIMEntAtIon
4.1 Experimental Setup

To check the effectiveness of proposed method a number of 
experiments were carried on a machine with Intel i5 processor 
@ 3.1GHz clock speed, with 4GB RAM and windows 7 OS 
with Weka and Python interpreter installed.

4.2 data Set collection
 For the experimentation, we collected 266 files from the 

system 32 folder of a freshly installed win 7 OS. The files were 
checked for any infection by uploading them to virustotal.com 
which checks the files uploaded using a number of antivirus 
software. The 133 malware samples were downloaded from 
vxheavens19 and openmalware20 repositories. The samples 
consisted of metamorphic virus, worms and generic Trojan 
agents. Two datasets were created for the experimentation. 
Dataset1 consisted of 266 benign and 105 metamorphic 
malware samples belonging to different families and Dataset2, 
created to check the performance of the proposed model against 
generic malware included generic Trojans apart from those in 
Dataset1.

4.3 Evaluation criteria
Both 10 fold cross validation as well standard split dataset 

techniques to measure the performance of the proposed model 
using BNS against DF for feature scaling were employed. 
Cross validation was done primarily to compare results of our 
model with the model proposed by Ding8, et al.  

The performance of classifier was measured using three 
metric: accuracy, precision and recall. The same are defined 
as follows.

Accuracy:  It is the ratio of correct results against the total 
results and calculated using Eqn. (7):

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                        (7)

Precision: Also known as positive predictive value, it 
gives ability of the classifier to correctly label the positive 
classes. It is calculated using Eqn. (8).

TPPrecision
TP FP

=
+

                          (8)

Recall: It gives the sensitivity of the classifier and signifies 
the ability of the classifier to find all positive samples. It is 
calculated using the Eqn. (9).

TPRecall
TP FN

=
+

                                                     (9)

where TP is number of positive classes correctly classified as 
positive, FP is number of negative classes incorrectly classified 
as positive, TN is number of negatives classes correctly 
classified as negative, FN is number of negatives classes 
incorrectly classified as positive.

4.4 Experimental results
The malware detection method explained in Section 3 

was implemented in python language. As mentioned earlier, 
we created two datasets for evaluating our approach. Extracted 
the features using the technique similar to Ding8, et al. From 
the execution trace, extracted all trigrams as well as unique 
trigrams. The dataset containing all trigrams was used for 
calculation of TF.BNS and TF-IDF scores, while unique 
trigrams were used for calculation of BNS and DF scores.

Ding8, et al. had selected features based on information 
gain (IG) and DF threshold. Classification results obtained 
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when using IG, DF threshold, and Chi-square test as feature 
selection technique are compered. Tables 1 - 3 show the average 
accuracy, precision and recall rates from different classifiers 
on Dataset1 over 5 iterations when using 80 per cent of the 
data set for training and 20 per cent for testing. we used chi 
square test for feature selection when using TF-IDF, TF.BNS, 
BNS and IG, Chi-square and DF threshold when using DF. 
The classifiers were trained and tested on different number 
of features to evaluate the performance of the classifier when 
using different number of features.

 In the Tables 1 - 3; GNB, MNB, lSVC, PSVC, RBF and 
RF depict the classifiers Gaussian Naïve Bayes, Multinomial 
Naïve Bayes, Linear SVM, Polynomial SVM, SVM using 
Radial Basis function, and Random forest trees. The rates 
shown are expressed in percentage.

GnB MnB LSVc PSVc rBF rF
TF.IDF 98.02 81.44 99.61 68.85 68.85 93.37
TF.BNS 98.36 74.42 99.9 68.85 99.71 98.71
BNS 98.7 98.46 99.54 90.28 99.41 98.73
DF-IG 93.64 94.49 93.18 86.20 92 91.03
DF-ChI 93.67 94.8 93.41 86.76 91.78 90.88
DF 90.14 94.2 94.36 80.28 80.28 94.36

table 1.  Accuracy rates for dataset1

table 2.  Precision rates for dataset1

GnB MnB LSVc PSVc rBF rF
TF.IDF 98.22 82.45 99.64 47.41 47.41 98.34
TF.BNS 98.99 70.85 99.9 68.85 94.73 98.24
BNS 98.85 99.12 99.57 91.60 99.17 98.76
DF-IG 95.5 95.3 93.8 89.2 92.88 92.08
DF-ChI 95.2 95.25 94 88.9 92.69 91.99
DF 90.14 94.9 94.7 80.3 64.5 94.7

table 3.  recall rates for dataset1 

GnB MnB LSVc PSVc rBF rF
TF.IDF 98.02 81.44 99.61 68.85 88.85 98.37
TF.BNS 98.36 74.42 99.9 68.85 94.71 98.17
BNS 98.70 98.46 99.54 90.28 99.11 98.73
DF-IG 93.67 95 93.16 87.26 92.02 91.01
DF-ChI 93.65 94.87 93.42 86.78 91.8 91.3
DF 90.10 94.2 94.4 64.5 80.3 94.4

GnB MnB LSVc PSVc rBF rF
TF-IDF 90.70 73.26 92.94 52.86 70.04 89.10
TF.BNS 92.58 63.24 92.81 52.86 87.89 89.19
BNS 91.34 91.17 91.86 85.10 91.28 89.30
DF-IG 87.50 89.71 87.90 60 84.52 87.71
DF-ChI 86.30 89.99 87.71 60.57 84.85 87.90
DF 81.4 90.1 88.57 60 60 88.57

table 4.   Accuracy rates for dataset2

table 5.  Precision rates for dataset2

GnB MnB LSVc PSVc rBF rF
TF-IDF 94.49 75.28 93.18 27.94 63.33 90.80
TF.BNS 93.92 56.22 93.64 27.94 90.19 90.70
BNS 92.45 91.18 92.91 88.40 92.51 91.3
DF-IG 92.6 90.82 86.50 36 82.60 86.7
DF-ChI 91.81 91.59 86.24 36.9 81.2 86.84
DF 82.5 90 88.57 36 36 87.5

table 6. recall rates for dataset2

GnB MnB LSVc PSVc rBF rF
TF-IDF 90.70 73.26 92.24 52.86 70.04 89.10
TF.BNS 92.58 63.24 92.81 82.86 87.89 89.25
BNS 91.34 91.17 91.86 85.10 91.28 89.35
DF-IG 87.5 89.69 87.90 60 84.67 87.72
DF-ChI 86.45 89.57 87.41 54.18 84.86 87.1
DF 81.4 90.1 88.1 60 60 88.6

TF-IDF, TF.BNS, and BNS with chi-square feature 
selection gave best results with linear SVM  giving accuracies 
of  99.61 per cent, 99.9 per cent, and 99.54 per cent, respectively 
with similar precision and recall rates, while DF with IG, 
chi-square and threshold as frequency selection metrics had 
best results with Multinomial Naïve Bayes classifier, giving 
accuracy results of 94.49 per cent, 94.8 per cent, and 94.2  per 
cent.

Tables 4 - 6 show the accuracy precision and recall rates 
for the same classifiers on Dataset2.

 The performance for all feature scoring techniques dipped 

for Dataset2 due to addition of generic malware Trojans which 
did not belong to any family. however, TF-IDF, TF.BNS 
and BNS still performed better than DF by around 3 per cent 
improvement in accuracy rates.  

It can be seen, that TF-IDF and TF.BNS showed slightly 
better results as compared to BNS and DF. however, they both 
suffer from additional computational and storage overheads 
incurred while storing and processing all the trigrams present. 
hence, it is recommended to use only unique trigrams extracted. 
For the next set of experimentation by means of 10 fold cross-
validation, we used only BNS and DF for classification tests. 
Figures 6 and 7 give the accuracy rates for BNS using chi square 
test for feature selection and DF scoring using DF threshold for 
feature selection8, using Gaussian Naïve Bayes, Linear SVM, 
SVM with radial basis function as kernel functions for dataset1 
and dataset2, respectively.

It is seen from the figures above that BNS has performed 
consistently better than DF for multi-class malware 
detection, with average accuracies for BNS with GNB, 
lSVC and RBF being 97.38 per cent, 95.9 per cent, and 
96.9 per cent, respectively for Dataset1 and 90.93 per cent, 
92.33 per cent, and 93.2 per cent, respectively for Dataset2.  
Yuxin8, et al. had developed the model for only binary 
class classification. Our model when tested on binary class 
classification with all malwares combined into a single class 
gave average accuracy rates of  99.2 per cent with Gaussian 
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Naïve Bayes and SVM classifiers, indicating that most of 
misclassifications in our took place between different malware 
classes. The same was also confirmed by analysis of the 
confusion matrix generated at each stage.

The learning curves for Gaussian Naïve Bayes and Linear 
SVM classifiers for the experiments involving BNS as feature 
scoring technique are shown by Figs. 8 and 9, respectively. 
Both the curves show that the classifiers have been trained 
and the test accuracy scores will improve as more samples are 
added. This will result in further improvement in detection 
accuracy as the number of malware samples increases.

5. concLuSIonS
Existing CFG and Opcodes Sequence based malware 

detection methods either cannot accurately describe the 
behaviors of the original executables or based on binary 
classification only. In this research paper, we have proposed 
an automated multiclass malware detection method using 
opcodes generated from CFGs and BNS for feature scoring. 
Our experimental results show an improvement of up to 4 per 
cent in accuracy, precision and recall rates over DF when tested 
over multiple classifiers. The proposed detection model also 
showed accuracy  rates of 99.2 per cent for two class malware 
detection when using Gaussian Naïve Bayes and Support Vector 
Machines, which is much higher than what could be achieved 
using Document Frequency. The technique of scoring features 
performs better for classification than the filtering method of 
removing any features common to different classes of samples. 
Besides good performance, our proposed model achieves 
automatic classification of unknown malware samples into 
candidate families. This feature could be remarkably useful 
for malware analysts. Proposed method is bounded by the 
limitations that of any static detection technique. 
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