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1. INTRODUCTION
Wideband beamforming has been studied extensively due 

to its potential application in radar, sonar, and communication1,2. 
For wideband signals, the inter-element phase shift is frequency 
dependent. If using traditional beamforming techniques for 
narrowband signals, significant degradation of performance will 
occur. According to previous research, three main techniques are 
proposed for wideband beamforming, subband processing3,4,5, 
direct two-dimensional discrete Fourier transformation (2D-
IDFT) method6,7,8, and FIR filters structure9,10,11. 

Using non-overlapped band-pass filters, the wideband 
signal can be decomposed into several narrowband signals. 
Performing narrowband beamforming technique to each 
subband and summing up the outputs, the resulting wideband 
beamformer is achieved. Subband processing provides an easy 
way to deal with the wideband signal, but also introduces some 
problems, such as the non-continuity in phase of the output 
signal. 

By exploiting the Fourier transform relationship between 
the array’s spatial and temporal parameters and its beam 
pattern, L. Wei7,8 proposed approaches for frequency invariant 
beamformer. Starting from the desired frequency invariant 
beam pattern, using a series of substitutions and IDFT, the 
desired frequency response of each array element are obtained. 
In the direct IDFT structure, the frequency sampling mode will 
influence the system performance. 

In FIR filters structure, a bank of filters appending to each 
array elements are used to form frequency dependent response 
to compensate the inter-element phase shift. The coefficients 
of each filterbanks can be achieved by optimisation methods 
such that the resulting beam pattern approximates the desired 
one. However, to get frequency invariant beamformer, there 
are some restrictions on these filters. On the other hand, the 

number of coefficients to be optimised will be extremely large 
for large arrays, which brings difficulty in computation. 

2. WIDEBAND BEAMFORMING
For clarity in this article, a uniformed linear array (ULA) 

with isotropic antenna elements is considered. The extensions 
to other array configurations such as sparse linear array, two or 
three dimensional arrays could be gotten by similar idea. 

2.1 Wideband Array Pattern Response
The ULA has N array elements aligned with the x-axis 

with inter-element distance d. The angle q  is measured with 
respect to the x-axis, with zero degrees lying perpendicular to 
the axis. The far-field beam pattern of the ULA is given as1 
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where c is the propagation speed in free space, f is the radiating 
frequency and an are complex weight coefficients which are 
chosen to steer the beam and to control sidelobes. 

For wideband arrays, the radiating frequency f will cover 
a range of finite bandwidth, i.e., [ ]l uf f f∈ , , where lf  and 

uf  are the lower and upper bound frequency respectively. 
The bandwidth u lB f f= − . From Eqn (1), we can see that the 
beam pattern of wideband array changes with frequency. 

2.2 Wideband Beamforming with FIR Filterbanks
In order to compensate the frequency dependence of 

wideband beam pattern, a solution2 is replacing the complex 
coefficients an with frequency responses ( )nH f , i.e. 
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A special realization of frequency responses ( )nH f  is 
the space-time processor12 as shown in Fig. 1. 

In Fig. 1, the desired frequency response ( )nH f  of the nth 
array element is obtained by FIR filters with length M, i.e. 
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where Ts is the sampling period. The wideband beam pattern 
with FIR filterbanks can be expressed as 
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In the common case, the inter-element distance d is set 
to be half-wavelength of the maximum working frequency 
to avoid grating lobes, i.e., 2 (2 )min ud c f= λ / = /  . The 
sampling frequency 1s sf T= /  is usually twice of the 
maximum working frequency, i.e., 2s uf f= . Then we can get 

1 (2 ) 1u s sd c f f T/ = / = / = . Substitute sd c T/ =  into Eqn (4), 
it yields
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Now, the wideband beamforming problem is transformed 
into designing the filterbank coefficients m nh ,  to insure that the 
resulting beam pattern approximate the desired one over the 
working frequency band. 

2.3 Restrictions of Frequency Invariant Wideband 
Beamforming
To be frequency invariant, the beam pattern P(f, q)  must 

be a function of only q , or sin q . Let (sin )F q  be such a 
frequency invariant beam pattern. From Eqn (5), it seems that 
the filter coefficients m nh ,  could be computed directly and 
easily by applying 2D-IDFT on (sin )F q . However, there are 
some restrictions between (sin )F q  and m nh , . 

2.3.1 Restriction on Bandwidth
Frequency invariant beam pattern could only be 

obtained over limited working frequency band. Otherwise, if 
1 2( ) ( )P f P f,q = ,q  for arbitrary frequency f1 and f2, we can 

get 
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where ( sin )m n sx m n T, = + q . By properly choosing a series of 
discrete frequencies 1 kf ,  and 2 kf , , k=1,2,...,K, the Eqn (6) can 
be written as 

0=Ah                                                                           (7)
where 
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For a lot of choices of 1 kf ,  and 2 kf , , the matrix A is 
non-singularity and h=0. Therefore, to get non-zeros FIR 
filterbanks, the working frequency band must be limited. 

2.3.2. Restriction on Filterbanks
For given frequency bandwidth u lB f f= − , the length of 

filterbanks M must be long enough to ensure that the space-
time processor in Fig. 1 has sufficient degrees of freedom 
(DOF) to form the desiring beam pattern. With sufficient large 
M, the equations in (7) could have non-zero solutions. On the 
other hand, filterbanks with real coefficients are easier to be 
implemented than those with complex coefficients. Further, if 
the filterbank coefficients are symmetric, the implementation 
costs and computation requirements can be reduced. Therefore, 
we limit the coefficients m nh ,  to be real and symmetric, i.e. 

1 1m n m N n m n M m nh h h h, , − − , − − ,= , =                                 (8)

3. DESIGN APPROACH
3.1 Determination of Filterbank Length

For the space-time processor in Fig. 1, the system DOF 
rs is defined as the number of free parameters. Based on the 
adaptive signal processing theory, the system DOF rs should 
to larger than the DOF of the received wideband signal to 
form effective beam pattern 

12. If the space-time processor has 
real and symmetric filterbank coefficients, the system DOF 
rs can be computed directly by counting the number of free 
parameters and given as 

4
( 1)( 1) 4s

MN M N even
r

M N M N odd
/ ,

=  + + / ,                             (9)
We denote rw as the DOF of the received wideband signal. 

It can be estimated by the Landau-Pollak theorem which is 
expressed as follows. 

Theorem13,14: A signal with frequency bandwidth B and 
time duration T has its energy concentrated in its largest wr  
eigenvalues, 2 1wr BT= + . 

For wideband beamforming problem in Eqn (5), the 
equivalent space-time two-dimensional signal 
has the following form, 

2 ( sin ) sj f m n T
m ns e− π + q

, = ,                        (10)
where 0 1 1m M= , ,..., − , 0 1 1n N= , ,..., −  
and ( )min maxq∈ q ,q . According to the space 
time equivalence12,14, the two-dimensional 
signal above can be viewed as the equivalent 
one-dimensional signal with bandwidth 

u lB f f= −  and a maximal time duration of 
( 1 2( 1)) sM N T− + − . Applying the Landau-
Pollak theorem, the DOF of the received 
wideband signal can be easily obtained, i.e., 

Figure 1. Wideband beamforming by space-time processor.
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where ( )r u l uB f f f= − /  is the relative bandwidth of 
interesting signal frequency. 

Therefore, we get the conditions for filterbank length M 
as follow  
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3.2 Optimisation of Filterbank Coefficients
The optimisation of filterbanks is to insure that the 

resulting wideband beam pattern approximate the reference 
pattern over the interesting frequency band. For real and 
symmetric filterbanks, after substituting Eqn (8) into Eqn (5), 
the resulting beam pattern is real and could be expressed as 
follows. When M and N are even numbers, 
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When M and N are odd numbers, 
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Let (sin )F q  be the desired frequency invariant pattern 

at angle q , which is usually given by applications. The 
optimisation problem is to find { }m nh ,  such that ( )P f ,q  
approximates ( )F q  over the working frequency band [ ]l uf f,
. At the same time, to improve the robustness of wideband 
beamformer against random errors, we need to constrain the 
norm of hm,n under some known level d . D. P. Scholnik and 
J. O. Coleman9 firstly introduced this constraint to avoid a 
large noise gain. One can get more details in this reference. 
Therefore, the optimisation problem can be formulated as 

2
2

2

( ) (sin ) [ ]l umin P f F f f f

s t

,q − q , ∈ ,

. . ≤ d
h

h                  (15)

where 2.  is the Euclidean norm. 
By discretizing the frequency band and angle range 

with a finite number of samples, 0 1 1kf k K, = , ..., −  and 
0 1 1l l Lq , = , ,..., − , the problem (15) can be reformulated as 
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By introducing a new non-negative variable λ , Eqn 
(16) can be converted to an equivalent optimisation without 
constraints as 
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which is also known as the least mean square (LMS) solution. 

4.  SIMULATIONS
Simulations are performed to show the effectiveness of the 

proposed method. The frequency range of interest is set to be 
1 3f< ≤  GHz. The uniformed linear array has N = 21 elements 
with an adjacent element spacing 2 (2 ) 5min ud c f cm= λ / = / = .  
The desired beam pattern is set to be the response for a narrow-
band signal with frequency 1.5 GHz and using Taylor weights 
of -30 dB sidelobes. The Taylor weights15 can provide a near 
optimum beamwidth for a given peak-sidelobe level. The 
expression of the desired beam pattern is given by 
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where wn are Taylor weights of –30 dB sidelobes, which can be 
computed approximately by the following formula
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where R=30, 1N N= − . The desired beam pattern is shown 
in Fig. 2. 

After discretizing the angle interval [0 180 ]°, °  and the 
frequency band [1,3] GHz into uniform grids, 100 angle 
samples 1 2 100q ,q ,...,q  and 100 frequency points 1 2 100f f f, , ...,  
are obtained to form the matrix A and the desired pattern F. 
The robust parameter d  is set to be 0.1. Using the formula 
(18), we get the impulse responses of FIR filters. The frequency 
magnitude of 1 2 21( ), ( ), , ( )H f H f H f  are given in Fig. 3.
The achieved wideband beam pattern is shown in Fig. 4. 



DEF. SCI. J., VOL. 62, NO. 4, JULY 2012

246

The beam pattern has a clear frequency invariant property 
which shows the effectiveness of the proposed beamforming 
method. One can set the robust parameter d  to be other values 
other than 0.1. With a smaller d , the resulting frequency 
invariant beam pattern can approximate the desired pattern 
better. But it will be more sensitive to random noise. On the 
other hand, if d  is larger, the resulting beam pattern will be 
more robust.

5. CONCLUSION
In this article, we proposed a new wideband beamformer 

with frequency invariant property by optimising the coefficients 
of real and symmetric FIR filters. The lower bound of filter 
length is given by applying the Landau-Pollak theorem to the 
received wideband signals. The filter coefficients are solved 
by the LMS algorithm. The proposed method can also be 
generalized to sparse linear array, two or three dimensional 
arrays easily. 
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