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ABSTRACT

In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting
all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous
robots is a challenging and complex task. With a number of existing architectures and tools to choose from,
areview of the existing robotic architecture is essential. This paper surveys the different paradigms in robotic
architectures. A classification of the existing robotic architectures and comparison of different proposals
attributes and properties have been carried out. The paper also provides a view on the current state of
designing robot architectures. It also proposes a conceptual model of a generalised robotic architecture for

mobile autonomous robots.
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1. INTRODUCTION

Though the research in robotics has been in existence
for a number of years yet there are still many challenges
in the field!. This is because robotic systems are complex
to build and difficult to maintain. Moreover, as developers
move away from stationary robots, the area of mobile robots
has received much attention in the research community.
The term mobile robot describes a robotic system able to
carry out tasks in different places and consisting of a
platform moved by locomotive elements’. When mobile
robot systems operate in the real-world environment without
any form of external control for expected periods of time,
these are described as being autonomous. Mobile autonomous
robots thus have mobile and autonomous capabilities to
carry out required tasks with minimal user control. These
robots may consist of a number of sensors, actuators,
global positioning system (GPS), and processing units.

The underlying framework which interconnects the
entire robotic system (hardware and software) is referred
to as a robotic architecture. The robotic architecture is
defined as the discipline devoted to the design of highly
specific and individual robots from a collection of common
software building blocks®. Architecture for a robotic system
can also define how sensors, actuators, and the physical
platform interact with each other. Due to non availability
of uniform standards in robotics, there is no commonly
accepted robot architecture. This has led to researchers
being forced to develop their own robotic architectures.
Researchers develop architectures for their own robot’s
specific need which may not be applicable to other robotic

systems. This is a waste of time and causes re-invention
of the wheel®. Another challenge can be the complexity
and insufficient information on the design and description
of the architecture which causes difficulties to robot
developers when adopting that particular architecture.

2. MOBILE ROBOTIC ARCHITECTURE

Mobile autonomous robots can be defined as complex
systems designed to be intelligent and mobile with some
level of autonomy. Mobile autonomous robots are required
to perform different tasks concurrently and asynchronously,
thus, adding immensely to system complexity. This leads
to an appropriate structure of how all sub-systems interact.
This structure in robotics is referred to as a robotic architecture.

A robotic architecture is the discipline devoted to the
design of highly specific and individual robots from a
collection of common software building blocks®. The architecture
of a robotic system can also define how sensors, actuators,
and the physical platform interact with each other. The
architecture thus represents an abstraction of a system
and should be described by the sub-components that support
the system’s design and description of the architecture
which causes difficulties to robot developers when adopting
that particular architecture.

3. MOBILE ROBOTIC ARCHITECTURE DESIGN
PROPERTIES
The design used in development of a MRA depends
on the robotic system design requirements. One needs to
know what properties an architecture for autonomous mobile
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robots should have. Some design properties are®:

e Reliability: is concerned with a system’s ability to
check if the architecture can achieve its designated
tasks (possibly with some performance reduction in
time, cost, or accuracy) even when performance is
degraded. Reliability can be evaluated by manipulating
function (e.g. sensor/actuator failure) and measuring
the effect on task achievement.

o Generalisation and adaptability: refer to the ability
of a system to act appropriately (not necessarily optimally)
in situations that it has not encountered before.
Generalization in machine learning is assessed by
separating training, testing and demonstration performance
in new situations. Generalization and adaptability allow
a system to refine the current task and its behavior
according to the current goal and execution of the
task.

e  Modularity: refers to the generic design of a system
to consist of easily interchangeable modules/components.
Components of a modular system can be replaceable.

e Autonomy: refers to a system’s ability to carry out its
own actions independently with least, minimal, or no
user involvement.

e  Robustness: is concerned with the system’s ability to
handle imperfect inputs and unexpected events such
as sensor failures.

e  Extensibility: is concerned with the system’s ability
to expand a system and the level of effort required
to implement the expansion. Extensions can be through
the addition of new functionality or modification of
existing functionality.

e  Reactivity: is concerned with the automatic response
of a robotic system to situations.

e  Run time flexibility: refers to the system’s ability to
be adjusted or reconfigured during execution and how
easily adaptation and learning can be introduced.
The above design properties provide guidelines in

evaluating the performance of the system. Generally, the

design depends on what the requirements are. In some
situations, surgical robots for example, generalisation may
be more important than extensibility.

4. CLASSIFICATIONS OF ROBOTIC

ARCHITECTURE

In classification of robotic architectures, primitives
used involve the more crucial actions performed by a
robot to achieve tasks. In general, robots sense the
environments using sensors. Then they plan the next
step and act by following the planned action. Thus, the
accepted robotic architecture primitives are sense, plan,
and act. These are associations of how sensory data is
processed and propagated through the system. Sense
refers to the sensory or perceptual system that a robot
uses to perceive the world around it. Plan refers to a
planner and usually a complex planner that uses some
sophisticated problem-solving technique. Act refers to
actuators with which the robot can act upon its environment.
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This approach is referred to as a sense-plan-act (SPA)
approach?*. Robotic architectures are classified based on
their SPA approach. The three main classifications, namely
a function-based architecture (deliberative), a behaviour-
based architecture (reactive), and a hybrid architecture.

4.1 Function-based Architecture

The function-based architecture (Fig. 1), is one of the
first approaches which was the dominant paradigm in the
early days of artificial intelligence (AI) robotics where the
focus was on robot planning and higher-level reasoning’.
These are also referred to as deliberative architectures.
Function-based architectures follow a top-down SPA approach.
The emphasis of function-based architectures is on constructing
a detailed environmental model and then to carefully plan
the functions to be carried out. The sensing module is
used to translate sensor data into an internal world model.
Based on this internal model, and given a goal, the planner
generates a series of actions to be undertaken. The act
module then takes the plan and sends actions to the robot
actuators. The process is iterative and there is a feedback
mechanism from act to sense.

Act T

I" Sense

Figure 1. Function-based architecture.
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The benefit of the function-based architecture is its
ability to utilise past experience and knowledge to accomplish
a task. To accomplish a task, a robot needs to form a
representation of the world. It uses a process of inference
to derive the new representations about the world, and
use these new representations to deduce what to do°.

A major challenge with this architecture is that, in
dynamic environments, the robot can’t maintain coupling
(interaction) with its environment. This is due to its world
model representation which is not instantaneously maintained.
Consequently, the robot often loses the correlation to the
environment and needs to carefully observe the environment
again to find the correlation and re-plan. In addition, because
of intensive planning, response is slow and latency becomes
variable, thus making this approach unsuitable for dynamic
environments.

4.2 Behaviour-based Architecture

A shift from the traditional function-based approach
is the behaviour-based (reactive) systems. Inputs to actuators
in a behaviour-based architecture, as depicted in Fig. 2,
are direct outputs from a sensor and there is no planning
involved. behaviour-based systems exhibit various behaviours,
some of which are emergent. These systems are characterised
by direct coupling between sensors and actuators, and
minimal computation. In this type of architecture, the robot
components include behaviour modules, and the feedback
control mechanism for behaviours closely connects the
robot to the real-world.
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Figure 2. Behavior-based architecture.

Behaviour-based architectures are more suitable to
robots that perform in dynamic environments as these
react well to changes in the environment®. However, the
main challenge of the behaviour-based architecture is that
it tends to lose its appeal as environmental task complexity
increases. The more the world changes during execution,
the more the resulting value of any previously generated
plans decreases. This result in any representational knowledge
stored ahead of time or gathered during execution becoming
more unstable'. There is also a challenge of selecting the
proper behaviours for robustness and efficiency in
accomplishing goals. Again, as complexity within the
environment increases, so does the number of Behaviours
that a robot may exhibit. This makes the prediction of
ultimate behaviour difficult. Another challenge is the low
level of intelligence as there is no planning.

Examples of behaviour-based architectures include the
well-known subsumption architecture by Brooks’, behavioural
architecture for robot tasks (BART), the distributed architecture
for mobile navigations (DAMN)’, and a hierarchical architecture
for behaviour-based robots'.

There is always a question of how the system should
arbitrate/coordinate/cooperate its behaviours and actions?
Behaviour-based architectures uses a coordination mechanism
based on domain-specific metrics to select the appropriate
behaviour. Different behaviours are coordinated to have
one behaviour/command sent to the actuators. Coordination
mechanisms avoid conflicts between two or more active
behaviours. The two types of coordination methods used
are competitive and cooperative coordination®. In competitive
coordination (Fig. 3), behaviours compete and only one
behaviour is selected and activated.

COORDINATION

1
—»{ BEHAVIOUR | >

Figure 3. Competitive coordination.

Behaviour arbitration requires that a coordination function
serving as an arbiter selects a single behavioural response’.
Behaviours can be selected based on priority with the use
of suppression and inhibition. Suppression overrides the
normal input signal from being transmitted. Inhibition prevents
a signal from being transmitted along a behavioural module’s
wire from reaching the actuators. Brook’s subsumption
architecture? adopts this approach. Another method of
competitive-based approach is using action-selection

= BEHAVIOUR 1

—» BEHAVIOUR 2

—% BEHAVIOIR 3

coordination. For this more democratic method, behaviours
generate votes for actions, and the action with most votes
is chosen. The DAMN architecture’, amongst others, adopts
this method. The advantages of using competitive coordination
include modularity, robustness, and tuning time. Demerits
include performance, development time, and complexity;
these problems are caused by the mechanisms used to
select the optimal behaviour amongst the various competing
behaviours.

Cooperative coordination (Fig. 4) differs from competitive
coordination in a sense that the different behaviours are
all considered and fused together. This type of coordination
method provides the ability to concurrently use the output
of more than one behaviour at a time. The main issue is
the combination mechanism for all behaviour output to
one fused behaviour. The resultant behaviour from the
vector summation is then normalised. Advantages of using
such approach include increased performance, development
time, and simplicity. However, cooperative coordination is
disadvantageous due to no modularity, no robustness,
and increased tuning time.
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NORMALISATION
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Figure 4. Cooperative coordination.
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Figure 5. Hybrid coordination.

Hybrid coordination then proposed a combination of
competitive and cooperative coordinations to overcome
their demerits®’. Hybrid coordinations is illustrated in Fig.
5. As shown in Fig. 5, two behaviours are initially fused
together. The third behaviour is the behaviour that results
by fusing behaviours 1 and 2.

Adopting the hybrid-based coordination approach may
increase the system’s latency due to multi-processing of
different behaviours.

4.3 Hybrid Architectures

Hybrid architectures (Fig. 6) were developed to address
the problems of the function-based and behaviour-based
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architectures and to blend their qualities, such as retaining
of planning in some way as well as direct coupling. Hybrid
architectures have become the leading architectural paradigm
as these combine the qualities of both architectures. A
hybrid-based architecture enables the architecture of
autonomous robots to have both decision-making and reactive

capabilities.
PLAN
SENSE ACT

Figure 6. Hybrid architecture paradigm.

Hybrid architectures are more suitable for complex
environments, which can be both static and dynamic for
a while. There are many variations of architectures in this
category, depending on the design details, and how these
are combined'.

Research work on hybrid architectures includes
ATLANTISS, layering using data persistence'* (LUDAP),
servo-subsumption-symbolic (SSS) architecture'!, task control
architecture'? (TCA), autonomous robot architecture'* (AuRa),
DD&P', 3-Tiered'’, RHINO', SOMASS', CIRCA'®, and
SAPHIRA . Most of these architectures have proven to
be successful but they are still not robust enough for a
range of tasks. As the hybrid architectures also inherit the
weaknesses (such as slow response) of both functional
and behavioural architectures, a difficult task is to find
areasonable balance between the function-based and behaviour-
based architectures.

An interesting approach closely related to hybrid
architecture, presented by Lagland'®, et al. is the integration
of two distinct architectures to produce a dual-architecture
rather than developing a single hybrid architecture that
has qualities of the function-based and behaviour-based
architectures.

One of the most prominent works in hybrid architecture
is the development of the coupled layer architecture for
robotic autonomy’® (CLARAty) which was designed by
NASA for space robots in 1995. Research on mobile robots
was expanded to support Mars exploration rovers and this
led to an interest to develop a reusable robotic framework.
This then led to CLARAty development by collaborative

effort among JPL, Carnegie Mellon, NASA Ames Research
Centre, and joined later by the University of Minnesota.
CLARAty is a two-layered architecture with decision and
functional layers. The functional layer is an interface to
all system hardware and the hardware capabilities, including
nested logical groupings. The decision layer breaks down
high level goals into smaller objectives. The objectives are
arranged in known constraints and system states for the
appropriate capabilities of the functional layer to access
these. CLARAty has successfully contributed to the field
of MRAs. However, here are still many challenges in developing
reusable software. These challenges and the steps towards
reusable robotic software are discussed by Nesnas?,
et al. The software is available for download?'.

Another prominent robot architecture is 4-D/RCS,*
which is a reference model architecture for intelligent unmanned
ground vehicles. The 4-D/RCS architecture is derived from
the real-time control system (RCS) architecture and the
German VaMoRs 4-D approach to dynamic machine vision.
The 4-D/RCS architecture provides a theoretical foundation
for designing, engineering, integration, and testing intelligent
systems software for unmanned vehicle systems. The 4-
D/RCS architecture is hierarchical and is composed of a
common node structure at each level.

A comparison and summary of the key features of
function-based, behaviour-based, and hybrid architectures
are given in Table 1.

5. LAYERED APPROACH TO MOBILE

ROBOTIC ARCHITECTURES

To improve the efficiency of the design of robotic
architectures for robots to perform complex tasks in dynamic
environments, tasks should be assigned to separate layers®.
The three-layer architecture approach has become a commonality
in robot control architectures?®. However, there is no fixed
limit to the number of layers. The layers differ between
architectures as well as the mechanisms for communicating
state information and coordinating activity. The top layer
adopts a more goal oriented view and plans over a longer
scope using information received from the sensory data.
The upper layer is deliberative whilst the middle layer is
reactive. The lower layer provides fast, short horizon decisions
to facilitate quickly executed actions based on sensory
data. The lower layer controls the robot architecture components,
namely the sensors and actuators.

Table 1. Comparisons and summary of function-based, behaviour-based and hybrid-architectures

Function-based Behaviour based

Hybrid

- deliberative - reactive
- intense computational requirements
- slow response - quick response
- world representation

- suitable for static environments

- high level of intelligence

- minimal computational requirements

- no world representation
- suitable for dynamic environments

- low level of intelligence

- deliberative and reactive

- intense computational requirements
- slow response

- world representation

- suitable for complex environments

- high level of intelligence
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Figure 7. Three-layered architecture.

The hybrid (sense-plan-act) architecture adopts thethree
layer approach. For example, the Aura architecture'® has
the following layers: a hierarchical component (deliberative),
reactive component and execution (control) layers. The
hierarchical component includes a mission planner, spatial
reasoner, and plan sequencer. The hierarchical component
is concerned with establishing high level goals for the
robot and specifying the constraints within which it must
operate. The reactive component specifies and instantiates
behaviours which are sent for execution. Other architectures
which adopt the three-layered architecture include 3T* .

6. CENTRALISED VS DISTRIBUTED

ARCHITECTURES

In a robotic system, it is also crucial to choose
between a centralised approach or a distributed approach.
A centralised system consists of one sub-system which
has overall responsibility for control. The communication
between the sub-systems is via the controller sub-system.
The centralised approach has the ability to coordinate
multiple goals and constraints in complex environments.
However, if a controller sub-system fails, the whole system
fails. Thus, a purely centralised architecture is clearly
not appropriate for a real-time system where the environment
is dynamic or uncertain. This then resulted in the design
of distributed architectures.

A distributed system consists of multiple sub-systems
that control and communicate with each other by message
passing. Distributed architectures offer reactivity to dynamic
environments. Flexibility and robustness are also increased.
However, distributed architectures cannot perform very
well in complex environments. Moreover, the interaction
between the system and its environment becomes less
predictable and more difficult to understand and modify.
Communication amongst modules also becomes a challenge
in distributed systems. The designer needs to choose
the desirable communication mechanism. The subsumption
architecture'® has direct communication between modules
and this provides the system designer with a high degree
of control over the operation of the system, which may
be desirable when modules are engineered to interact.

A comparison between the centralised and distributed
approaches is shown in Table 2.

Table 2. Centralised vs Distributed architecture

Centralised Distributed
Advantages: Advantages:
- coordination of multiple - reactivity, flexibility and
goals and constraints in robustness
complex environments
Disadvantages:
Disadvantages: - not appropriate for complex
- not appropriate for dynamic environments

environments with
uncertainty

- can be subject to terrible
failure if the controller
subsystem fails

7. PROGRAMMING AND DEVELOPMENT TOOLS

Development of mobile autonomous robots is still an
adhoc activity and suffers from the lack of standard paradigms.
There is still a challenge® of obtaining models that encompass
full autonomy in robot system design. Many successful
development tools are mostly based on trial and error due
to a number of issues with the development of robots.
These challenges may include the complex tasks a robot
has to perform. Environmental changes (static or dynamic
environments) also contribute to challenges in robotic system
development.

The development of a system begins with gathering
system requirements and performing system design. For
system design and documentation of the system’s requirements
the unified modelling language (UML)*? is mostly used
because of its widespread tool support and is an industry
standard for specifying software systems. Other modelling
languages used in robotic systems include EXPRESS (data-
modelling language)®® and behaviour trees (formal graphical
modelling language)*’.

Communication amongst the robot system components
is also crucial. The software system that implements
communication amongst system components is referred to
as middleware. There are two basic approaches to system’s
communication: client-server and publish-subscribe. In client-
server communication, components interact directly with
other components. There are several existing client-server-
based middleware solutions, for example ORCA?* and Go*.
Protocols based on the client-server approach are Corba*
and remote procedure call protocol (RPC)*. The client-
server approach allows distributed data communication
with no central module to distribute data. A disadvantage
to distributed data communication is the high overhead
introduced, especially if many components need the same
information.

The publish-subscribe mode of communication publishes
data for components to subscribe to. Only the subscribers
receive published data to reduce distribution of data to
the entire system. Examples of middleware based on publish-
subscribe include Player and GenoM. The popular protocols
of publish-subscribe are the inter-process communication
(IPC) and data distribution service (DDS). The publish-
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subscribe mechanism is very simple to use and has low
overhead. However, publish-subscribe often uses a single
central server, proving a single point of failure.

The choice of selecting the best tools and mechanisms
to use depends on the system requirements and the robotic
system design specifications. These choices can be the
most important and constraining of many decisions a robot
architecture designer has to make. In many cases, most
debugging time in robot architecture development have to
do with communication between components. A useful
comparative review of robot programming languages has
been done by Pembeci and Hager?.

8. A GENERALISED ARCHITECTURE FOR

MOBILE AUTONOMOUS ROBOTS

The proposed generalised architecture for mobile
autonomous robots is illustrated in Fig. 8. This is only a
conceptual model which has not yet been tested and analysed
but a proposal for mobile autonomous robots. The model
is a three layered, hybrid-based architecture supported by
the design properties discussed in Section 3.

The proposed architecture has both deliberative and
behavioural layers. The deliberative layer will ensure good
planning mechanisms and high level reason are carried out
by the robotic system. The control layer represents the
hardware units that controls the robot’s sensing and actuation.
The behavioural layer will ensure that the robot reacts
quickly to unknown environments or situations by creating
behaviours. The architecture includes the following major
components- a world model, planner, learning component,

and the command generator. World model defines the external
environment with which the robot interacts. World model
can represent dynamic and static environments. In a static
environment, the environment does not change whilst the
dynamic world model represents an environment with the
ability of changing, for example, moving obstacles.

The planner is the processor unit which interacts with
the world model and decides whether any planning is necessary,
otherwise it reactively responds by creating behaviours.
If planning is required, the planner derives a plan in terms
of sequential tasks the system has to undertake to achieve
a goal.

Behaviours are coordinated using a hybrid coordinator.
The hybrid coordinator uses both competitive and cooperative
mechanisms to combine the different behaviours. The command
generator creates commands for the robot’s actuator to
perform. The learning component introduces new knowledge
(facts, behaviours, rules, etc.) into the system. Several
learning mechanisms that can be used for learning include
reinforcement learning, learning by imitation, and neural
networks.

The proposed architecture is to adopt a distributed
approach which offers reactivity, flexibility, and robustness.
The distributed approach is suitable for dynamic environments
with uncertainty which is-what mobile autonomous robots
are subjected to a client-server-based communication mechanism
will be applied.

Overall, the proposed model promises to contribute
significantly in offering a reliable, modular, adaptable, and
modular robotic architecture. A more detailed architecture
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Figure 8. Conceptual hybrid robotic architecture.
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functionality will be published in future. The proposed
architecture aims at addressing development challenges
by offering a robustness to improve fault-tolerant capabilities.
Implementing learning should also be possible.

9. CONCLUSIONS

Research in robotics is shifting away from just static
robotic systems. The new focus is now on designing mobile
the system has to undertake to achieve a goal. The learning
component introduces new knowledge (facts, behaviours,
rules, etc.) into the system. Several learning mechanisms
include reinforcement learning, learning by imitation, and
neural networks.

Autonomous robot systems will function with minimal
user control. An important framework for integrating the
software and hardware components of a robot system is
arobotic architecture. Designing and developing a robotic
architecture is necessary in the development of a robotic
system. However, as no standard reference architecture
exists in literature, it becomes complex and difficult to
develop one from scratch or to use existing architectures
available in literature. A comparison and classification of
mobile robotic architectures is thus useful in assisting the
architecture developer in looking at different robotic architecture
design properties.
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