
651

1.  INTRODUCTION
Unmanned aerial vehicles (UAVs) have found many 

uses in both military and civilian operations. The application 
areas include surveillance, patrol, search and rescue, package 
transportation, etc. Although many researchers from different 
disciplines have made significant improvements in the 
development of these systems6, new challenges emerge as 
UAV-involved missions and operations become complex. 

An important research area is enabling UAVs with 
autonomous path planning. There are quite a number of studies, 
such as2,18,19,21, that use a 2D or 3D approach in autonomous 
path planning. There are also some studies5,15-17 using time 
dimension in addition to the spatial dimensions. In the studies 
using a 4D approach, although the researchers emphasize 
the superiority of the 4D approach, they do not support the 
superiority with an empirical comparison of their 4D approach 
with a 3D approach. In this study, our goal is to fill this gap by 
comparing 3D and 4D UAV path planning approaches. Unlike 
many studies either focusing on 3D or 4D, this research analyses 
simulation results obtained from both 3D and 4D path planning 
simulations. Our investigation yields that 3D autonomous path 
planning is inadequate especially if the environment is complex 
and dynamic. As a result, we contribute to the current literature 
by providing an empirical comparison of 3D and 4D (spatial 
and temporal) simulation of UAV path planning in complex 
dynamic environments consisting of an extensive set of criteria 
using different flight objectives. 

During the study, it is observed that the inadequacy of 
the 3D path planning reveals itself when the environment is  
dynamic and complex. A complex dynamic environment 
is the one that includes many constraints with different 
characteristics and various mission, flight, and environment 
related requirements. Even though, studies in autonomous 
path planning1,3,20,21,32-51 address many challenges, domain-
specific operational issues, such as utilisation considerations 
and aviation rules, did not receive adequate attention. This is 
important if the UAV under study is a medium altitude high 
endurance (MALE) UAV, because these types of UAVs are 
subject to aviation rules in addition to other criteria. There are 
different requirements and constraints for different types of 
UAVs. Naturally, a MALE UAV has different characteristics  
and requirements compared to a micro UAV has. In this 
study, the research model, consisting of mission criteria and  
objectives, is developed-based on the interviews with an 
experienced UAV pilot and mission planner to ensure the 
realism and relevancy of our research to UAV flight planning. 

Realistic simulation models are essential for UAV 
research. Realism is achieved not only by modelling the UAV 
but also by modelling the environment. In previous studies22-26, 
we discussed that modelling the operational environment 
is as important as modelling the UAV. In other studies27,28 to 
take the realism a step further, we equipped the UAV with a 
ranged sensor limiting the knowledge of the UAV about the 
environment. Furthermore, we showed that these models are 
modular, therefore reusable for different studies for different 
purposes29. 

To aid UAV path planning, we developed a simulation 
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model used to create flight paths in 4D environment. The 
simulation model is more applicable and realistic compared 
to other studies examined during the literature review. The 
study includes the most comprehensive set of requirements 
including the ones overlooked in a wide range of studies. This 
study extends existing literature1,3,20,21,32-51 by placing a special 
importance on aviation rules and utilisation considerations. 
The model generates suitable paths that address UAV 
performance limitations, environmental factors, basic aviation 
rules, flight dynamics, UAV utilisation considerations and user 
requirements. It helps in online and offline planning of optimal 
paths based on distance, fuel consumption, or time objectives, 
while implementing the described flight criteria. To build the 
simulation model (SM), we first built a conceptual model (CM) 
to structure the problem68. In the simulations, for each objective, 
various scenarios are created by changing the number of static 
and dynamic obstacles and target types. In each scenario, the 
path planning approach found the shortest and least costly flight 
paths. The path search is performed by A* heuristic algorithm 
proven to be complete and optimal. Additionally, in the 
experiments, A* algorithms with different heuristic parameters 
are compared using various scenarios in static and dynamic 
environments under different constraints. Since current UAVs 
have to make predictions and estimations about the possible 
future locations of mobile objects, the simulations also include 
path searches in time varying environments represented with 
a 4D grid. The 4D grid is constructed using a combination 
of 3D grids. Each 3D grid is a possible configuration of the 
world space at a specific time. A time-dimensional search 
space considers dynamic elements and changing factors in an 
operational environment.

2. LITERATURE REVIEW
The UAV path planning problem is a type of vehicle 

motion planning problem under differential constraints. This 
problem is significantly different from the problems related to 
traditional mobile vehicles and manipulator robots11. A previous 
study12 defines the ‘UAV path planning problem’ as ‘a multi-
objective decision making problem that takes into account of 
mission efficiency, flight rules, flight limitations, operational 
constraints, and environmental conditions’. 

In UAV path planning studies, world space is a physical 
space containing the UAV, the start location, the target or goal 
location, and the obstacles defined for this world. The physical 
space is basically divided into two main regions: free-space 
and obstacle space. Obstacle space are the regions filled with 
obstacles13,14 or a set of points leading to a UAV collision 
with the obstacle7. A ‘configuration’ is a vector of parameters 
that defines the shape of the UAV in the world space. The 
configuration coupled with its rate of change is called a 
‘state’.

The constraints that must be satisfied in the path-planning 
problem are generally divided into two main groups: motion 
and environmental. The motion constraints consist of maneuver 
limitations of the UAV such as turn, climb, and acceleration 
rate. The environmental constraints include physical obstacles, 
restricted areas, and meteorological factors such as clouds or 
winds. In the paper, the terms, ‘flight objective’ and ‘flight 

criteria’, are used instead of the common term, ‘constraints’. 
Planning methods in the robotics domain fall into two 

groups: sample-based planning and combinatorial planning14. 
Although combinatorial planning methods are complete 
and optimal, they are impractical for solving real problems 
because of their computational complexity14. Furthermore, 
the computation times of combinatorial algorithms also grow 
quickly with the number of primitives in the obstacle and 
configuration space53. Therefore, sampling-based planning 
emerges as a suitable way in motion planning with its 
practicality, simplicity, and efficiency in multi-dimensional 
environments.  In this study, sampling based planning is chosen 
because of its applicability.

Grid based sampling is a well-known sampling method in 
which each cube of the grid refers to a point in the world space. 
Grid based sampling decomposes the space into arrays of cells 
that represent the obstacles and free space in the world space56. 
The possible connections between these cells construct a 
search graph in which search algorithms traverse for solutions. 
Multi-resolution techniques54-56 are commonly used to reduce 
the complexity of a graph. In addition, decomposition methods 
are also used to reduce the number of samples in the generated 
graph by dividing the world space into regions30,31. 

UAV path planning studies addresses multiple flight 
objectives under several flight criteria12,20,21,32-51. In this study, 
we try to address an extensive set of criteria (see Table 1) in 
online path planning by implementing multiple constraints to 
provide more effective and safer UAV paths. We defined cloud 
criteria and implemented cruise level rule, air classes, mobile 
targets, and approach angle in addition to the criteria used 
commonly in earlier studies. Moreover, the target is mobile to 
make the model more realistic.

In addition to the studies presented in Table 1, there are 
also cognitive-based studies4,66-72 that aim to manage challenges 
between human and command and control (C2) systems in 
UAV domain. Several researchers highlighted human factors 
on C2 systems to increase the effectiveness of UAV operations. 
Focusing on dynamic UAV route re-planning during missions67-69, 
allocating air space66,70, and 3D space perception71-72 are some 
of the research areas in human controlled UAVs. 

3. CONCEPTUAL MODEL
3.1 World space Representation

In the study, the operational environment is modeled 
using a classic grid sampling method5 in which samples are 
represented by a cube or an instance in the world space. Each 
sample includes data relating to the operational environment 
such as wind speed and geographic location. UAV flight 
performance parameters and manoeuver limitations determine 
the size of the sample cubes. Horizontal and vertical length 
of sample cubes are determined based on the turn radius 
and ascend/descend angle of real UAVs. Vertical distances 
are determined based on the climb and descent angle of the 
aircraft. In the model, using realistic UAV flight performance 
limitations is important for two reasons. First, it increases the 
realism. Second, it prevents generating unnecessary samples 
and reduces computation time while ensuring collision-free 
paths. 
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The path planning of a moving UAV in a dynamic 
environment can be simply performed by applying a search 
at each location of the UAV in a 3D grid iteratively. After 
each UAV move on the previously calculated path, the path is 
recalculated on the updated grid regenerated due to the changes 
in the operational environment. This process is repeated 
iteratively until the vehicle reaches the goal state. Even 
though, this approach seems to run fast, it does not investigate 
the future status of the search space. As a result, it generates 
inconsistent and non-optimal paths in dynamic environments. 
At each iteration, the search algorithm calculates the path based 
on the current location of moving objects in the environment. 
Therefore, it might not find optimal solutions. 

The CM developed aims at creating least cost paths in time 
varying environments represented by a 4D grid (3 spatial 1 time 
dimension).  4D grids consist of future status of mobile objects 
in the operational environment. 3D grids, each of them can be 
defined as an instant status of world space in a time moment, 
form a 4D grid. A time interval ( )t∆ between two instances is 
determined by the UAV performance specifications. The time 
interval is measured as the time elapsed during the travel from 
one node to another in the search tree. 

In the estimation process, it is assumed that UAV has 
the ability to sense and detect the mobile objects and their 
movement during flight time (online) planning. In our CM, 
mobile objects move with constant speed on a steady course. 
Their future location '( )ml  are calculated using the mobile 
object speed ( )mv , time interval ( )t∆ between two instances 
and the current location of mobile object ( )ml .

md v t∆ = × ∆                                                                   (1)
'
m ml l d= + ∆                                                                     (2)

The generation of the 4D grid and path planning processes 
can be summarised with the following steps (Fig. 1):

3.2 Roadmap Generation
After spatially adjacent nodes are connected on a multi-

resolution grid, the links containing any obstacle such as 
buildings, structures, or other vehicles are removed to avoid 
collision. Finally, the adjacent nodes in time dimension of the 
4D grid are created. 

The grid is divided into several regions. Then, all nodes in 
each region are checked whether it is an obstacle node or not. If 
a node in a region is recognised as an obstacle node, the region is 
marked with a flag indicating that it is a high-resolution region. 
Regions without obstacle nodes are marked as low-resolution 
regions. In low-resolution regions, the border nodes are linked 
with the nodes existing in the border of other regions. This 
method uses a variable length successor to provide connectivity 
between the nodes that belong to different regions. In addition, 
this method creates adjacencies between nodes that are away 
from each other. Adjacencies in low-resolution regions provide 
an enhanced capability for the model to generate more smooth 
paths compared to classical adjacencies with a 45° angle.

The model checks for collisions between node pairs 
before generating adjacencies. Collision detection is handled 
implicitly with the help of obstacle identifier flag in a node 
object. If any node of the pair has an obstacle flag, the model 
cancels the links between these node pairs. Using obstacle 
identifier flags prevents additional collision control. The model 
ensures creating adjacencies between nodes, which exists in 
different time instants. Each node in the UAV path belongs to 
consecutive time instants. In a 4D grid, the time instant of the 
parent node is smaller than the child nodes.

In the calculation of time instant of the child node ci , 
first we find the number of hop ( )h  which can be described 
as ‘UAV’s pass during its flight from a parent node to a child 
node’(Eqn (3)). We use the physical distance between the 
parent node and the child node ( )pcd and find average the 
distance ( ( ))havg d   in the calculation of ( )h . We can find ci , 
with summing parent node instant pi  and h (Eqn (4)). In the 
subsequent planning iterations, the model updates ( ( ))havg d
with Eqn (5).

( )
pc

h

d
h

avg d
=                                                                   (3)

c pi i h= +                                                                        (4)

( ) pc
h

d
avg d

h
=                                                 (5)

Adjacencies between nodes in different time 
dimensions provide a continuous, realistic, and safe 
navigation for the UAV. By determining each node’s 
status (obstacle or not) for every time dimension, 
UAVs can fly over non-obstacle nodes. 

3.3 Multi-Criteria Path Planning Model
Strategies and methodologies used in criteria 

and objectives modelling, world space representation, 
graph generation, and searching in CM are presented 
here. In the study, we implement several flight 
criteria and flight objectives to plan safer flight paths. 
The criteria and objectives are selected based on Figure 1. 4D grid generation procedure.
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environmental factors, UAV performance limitations, basic 
aviation rules, and requirements stated by domain experts.

3.3.1 Flight Criteria
Flight criteria are requirements that should be met during 

flight. They do not influence the flight cost but affect flight 
safety and mission effectiveness. The flight criteria can be 
categorised as static and dynamic criteria. The information 
regarding the criteria and their implementations in the model 
is presented in section 3.3.1.1 and 3.3.1.2. The locations and 
properties of static criteria do not change over time, whereas 
the locations and properties of dynamic criteria may change. 

3.3.1.1 Static Criteria 
buildings and Architectures: buildings and architectures 

are represented with polygons. They are defined as obstacles in 
our world space (Fig. 2(a)).

Danger Areas: A danger area is a land region that poses 
any kind of threat to the UAV flight. For example, an anti-air 
defense system is a kind of threat to military UAVs. We make a 
distinction between the aerial threats and land based threats. In 
our model, we draw a half-sphere on the location of the threat. 
The center of this virtual sphere corresponds to the location of 
the threat (Fig. 2(b)).

Geographical Structures: Terrain is a natural obstacle 
that must be taken into account in low altitude flights. In our 
model, the terrain or in other words, a geographical structure, 
is represented as an obstacle. Therefore, the UAV cannot go 
through this terrain. The terrain elevations are obtained from 
digital terrain elevation data level 1 (DTED L1) maps from 
National Aeronautics and Space Administration (NASA)57. 
The environment model is inherently developed based on the 
geography of the operation area.

Above Ground Level (AGL) Rule: Pilots follow this rule 
to prevent aircraft from colliding. In our model, we identified 
a minimum altitude level above from ground level to ensure 
collision-free flights. Areas below the AGL altitude are defined 
as the obstacle space. This rule is inherently integrated into the 
model.

Cruise Level Rule: Cruise level rule is another rule that 
provides a safe flight for aircrafts. This rule forces aircrafts to 

fly in specific allowed altitudes for certain defined courses.  In 
this study, Turkish Air Regulations in cruise level separation is 
implemented. Odd multiples of 1000 ft Above Mean Sea Level 
(AMSL) (e.g. 1000 ft, 3000 ft, 5000 ft AMSL) are permissible 
for aircraft with headings between 0° to 179°. For headings 
between 180° and 359°, aircraft should cruise at even multiples 
of 1000 ft AMSL (e.g. 2000 ft, 4000 ft, 6000 ft AMSL). We 
believe that cruise level rule would reduce air space collision 
and near miss problems discussed in69,70. This rule is inherently 
integrated into the model.

3.3.1.2 Dynamic Criteria
Mobile Obstacles: Mobile obstacles can be other aircraft 

or other flying objects such as helicopters, or drones in the 
operational environment. These mobile objects are marked 
as ‘obstacle space’ in the world space. Therefore, the model 
inherently prevents the UAV from collisions with the mobile 
obstacles.  The mobile obstacles are represented with the 
approached detailed in12. In this approach, flying objects are 
characterized as cylindrical shapes (Fig. 2(c)). The dimensions 
of these cylinders representing the mobile objects are calculated 
in such a way that UAV is able to maneuver safely avoiding a 
collision with the mobile target.

Mobile Targets: Our model generates the least cost paths 
enabling UAVs to reach the mobile target. In this procedure, 
the model calculates the future locations of mobile targets 
and generates the optimal paths. Any movement model can be 
defined and implemented for the mobile targets. They can move 
at constant or random course and speed. In addition, predefined 
navigation paths can be fed into the simulation model (Fig. 
2(c)).

Clouds: In the operational environment, clouds are likely 
to prevent UAVs from completing certain missions such as 
reconnaissance via photographing or video capturing. In such 
circumstances, to complete the missions, UAVs should descend 
to lower altitudes below the clouds. Our model enhances 
mission efficiency by enabling UAVs to go under clouds when 
the weather is cloudy above the target location. At other times 
during flight, the UAV can fly through clouds. We represent the 
clouds with polygonal and cylindrical shapes as shown (Fig. 
2(d) and 2(e)).

Figure 2.  static and dynamic criteria.

(c)

(e)(d)

(b)(a)
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Wind: In the calculation of flight time and fuel 
consumption, wind is a major parameter that changes the UAV 
relative-to-ground speed. Thus, wind poses quite a challenge 
in path planning for UAV simulations. In our model, there 
are wind fields with various speeds and directions in the 
operational environment. The effect of wind is accounted for 
in the calculations.

3.3.2 Flight Objectives
Flight cost is the total cost of trajectories between nodes 

that construct the path from start to goal. It is measured based 
on time, distance, and fuel consumption. One of these flight 
objectives is chosen for the calculation of the flight cost before 
the simulation starts. A search algorithm then finds the optimal 
path with respect to the selected flight objective.

Let us define the roadmap as a search graph, ( , )G N E=
where the node is N∈ represents a cube in the grid in the world 
space representation, and the edge ije E∈ is the edge ( , )i js s
connecting two adjacent nodes is and js in the roadmap. Then 
any path, iP , between the start ( )starts and target nodes arg( )t ets
can be shown as,

{ }arg 1 1 2 , arg( , ) ( , ), ( , ),..., (pi start t et start i i i iK t ets s s s s s s sΓ =

where  is the length of the corresponding path iP . If the cost 
between two successive nodes iKS and 1iKS + is represented as

1( , )i ik ikf s s + the total cost is then calculated as,

arg 1
0

( ( , )) ( , )j pi start t et i ik ik
k K

COST s s f s s +
≤ ≤

Γ = ∑
where { }tan , ,j dis ce time fuel∈{distance, time, fuel}

Note that the above cost function uses only one of the three 
flight objectives. This single objective cost function can simply 
be converted into a weighted objective function similar to 20, 21. 
The weighted objective function is presented as follows:

arg 1
0

1 1

( ( , )) ( , )

( , ) ( , )

weighted pi start t et dist dist ik ik time
k K

time ik ik fuel fuel ik ik

COST s s w f s s w

f s s w f s s

+
≤ ≤

+ +

Γ = × +

× + ×

∑

Flight Distance: The distance cost function first calculates 
the grid distance on search space, then transforms that result 
into geographical distance. 

2 2 2( , ) ( ) ( ) ( )dist i j i j i j i jf s s x x y y z z= − + − + −

Flight Time: Our model calculates optimal paths for UAVs 
that leads to the target location in minimum time. Flight time is 
a function of distance, UAV motor speed and wind. The wind 
vector effects the flight time. The time cost is calculated with 
the following formula. The cost of each trajectory between node 
pairs is calculated based on the distance between nodes and the 
vector summation of UAV engine speed and wind speed.

( , )
( , ) dist i j

time i j
c w

f s s
f s s

v v
=

+
 

where cv is UAV engine speed, and wv is the wind speed.
It is assumed that the UAV flies at a constant engine 

speed. UAV relative-to-ground speed is calculated with vector 
summation of throttle and wind speed. 

Fuel Consumption: Flight endurance depends on 
fuel consumption in UAVs. Although many factors affect 

fuel consumption, we include altitude (pressure), speed/
acceleration, temperature, payload weight, climb/descend rate, 
engine specifications as parameters in our model12:

The UAV fuel consumption model is developed based 
on EngineSim, an analysis tool for aircraft engines developed 
by NASA52. Note that the overall conceptual model and the 
resulting simulation architecture is modular29, therefore it is 
also possible to easily replace the fuel consumption model 
with another model. In the current model, the UAV climbs with 
maximum throttle, descends with minimum throttle and cruises 
with optimal throttle. For example, the UAV uses less fuel in 
high altitudes or low speeds. The formula for calculating the 
fuel consumption: 

( ) ( ( ), ( ), ( ),

( ), ( ))
fuel alt spd temp payload rate alt alt spd spd temp temp

payload payload rate rate

F x x x x x g f x f x f x
f x f x

=

where ( )alt altf x is the fuel consumption at altitude x , 
( )spd spdf x is the fuel consumption at speed x , ( )temp tempf x  is 

the fuel consumption at temperature x , ( )payload payloadf x is the 
fuel consumption at payload x , and ( )rate ratef x  is the fuel 
consumption at rate x .

The fuel cost between the successive nodes is calculated 
by,

( , ) ( ) ( , )fuel i j fuel ij time i jf s s F x f s s= ×

where x is the parameter vector, ijx is obtained using the 
altitude of is and js , the speed of UAV, the temperature of the 
environment, payload of the UAV, and climb/descend rate of 
the UAV, respectively.

3.4 Path search
A* search algorithm is chosen for this study. A* provides 

simplicity and efficiency in implementation and is known to 
be suitable for path search when used iteratively in dynamic 
environments60. Note that there are newer search algorithms 
in the literature. However, most of them are derivations of 
A*. Since the goal in this research is to empirically compare 
a 3D and a 4D approach, not to develop a new algorithm, we 
chose A* search algorithm that provides the basis for most 
search algorithms used in UAV path planning. As a result, 
this comparison study is applicable to a wide range of other 
studies.

In the A* algorithm, the cost function ( )f x is calculated 
by;

( ) ( ) ( )f x g x h x= +

where ( )g x is the actual traverse cost from start to current 
node and ( )h x  is the estimated heuristic cost from the current 
node to the target. Therefore, ( )f x is the estimated cost of 
the cheapest solution through x . If ( )h x is an admissible 
heuristic, A* is optimal and complete. An admissible heuristic 
never overestimates the cost to reach the goal. If the heuristic 
is not admissible, A* finds suboptimal solutions. Another 
requirement to ensure optimality of A* is consistency. A 
heuristic is consistent if, for every node n and every successor 
n’ of n, the estimated cost of reaching the goal from n’ is not 
greater than the step cost of getting to n’ plus the estimated cost 
of reaching the goal from n’.
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For the distance objective, the heuristic function is the 
straight-line distance ( )SLDh from start to target location. For the 
time objective, the heuristic function is the shortest flight time, 
( )SFTh , which is based on wind direction and UAV course:

( )
( ) SLD

SFT
UAV w

h
h

v v e
=

+ ×

where UAVv is UAV speed, wv is wind speed and e is the side 
effect. Side effect is calculated based on the angle between 
wind direction and UAV course. It gets values between –1 and 
+1. While the wind blows opposite to the UAV course, side 
effect has minimum values. On the other hand, if the wind 
blows from the same direction, it gets maximum values.  

For the fuel consumption objective, we calculate the 
heuristic based on the highest altitude that a UAV can fly in 
similar environments. Fuel consumption reduces in high 
altitudes. Fuel consumption ( )

MPC
h  is calculated with the 

formula.
( ) ( ) ( )MPC SFT fuelh h f x= ×

where ( )fuelf x is fuel consumption at maximum altitude.

4. sIMULATION MODEL AND 
EXPERIMENTATION

4.1 Overview
In building the simulation model, two software packages 

are used: Simkit58-59 and OpenMap8. The Simkit package is a 
discrete event simulation (DES) code library written in Java59. 
Although it is a generic simulation package, it performs well 
in modelling defense systems9. The OpenMap package is a 
Geographical Information System (GIS) also written in Java. In 
the study, these environments are used together with a similar 
approach presented by Mack10. 

4.2 Inputs
Simulation inputs and parameters (modeled after existing 

medium altitude high endurance UAVs) are given in Table 2. In 
the simulation scenarios, the obstacles are positioned in such 

a way that they intersect with obvious optimal paths such as 
straight lines or diagonal lines. Thus, we intentionally increase 
the complexity of the scenarios and better test our model. In 
addition, the size of the man-made structures is defined as 
large obstacles to increase the environmental complexity, thus 
testing the model robustness.

4.3 Experiments and Results
The computer used for simulations is an IbM compatible 

PC with an Intel i5 2.93 GHz processor and 3 Gbyte RAM. The 
dimension of the world space is 60 nm x 60 nm x 31000 ft x 10 
t grid. The grid is sampled with nodes having a dimension of 2 
nm x 2 nm x 1000 ft. The UAV calculates its path considering 
the nodes in the world space. However, each node represents a 
real geographical location in terms of latitude, longitude, and 
altitude. A screenshot of a simulation run is presented in Fig. 3. 
In the figure, the optimal path from the starting point in the 
south to the end point in the north is drawn with a dotted line. 
Circular and rectangular shapes in the figure represent the 
obstacles. In this scenario, the target is moving with a constant 
speed. 

For the experiments, various scenarios containing different 
numbers of static and dynamic obstacles, target types, and grid 
dimensions are created. There are 24 world configurations 
and 3 flight objectives for each world configuration. A total 
of 72 scenarios are described in Table 3. Using a uniform 
distribution, the obstacles are randomly positioned in the map. 
In the simulations, the operational environment is categorised 
into three types in terms of static, dynamic, and highly 
dynamic. As the number of dynamic obstacles increases, the 
environment becomes more dynamic. When the number of 
dynamic objects reaches to 8, the 3D model fails in finding 
a solution. That is why we categorised these environments as 
highly dynamic. In the simulations, the UAV starts at a point 
located in the south of the map and moves to the ending point 
located in the north of the map. For each scenario, performance 
data is collected. The simulation performance data consist of 
grid generation time, path cost, and search time for different 

flight objectives. To compare 
the simulation performances 
of 3D and 4D simulations, the 
same world configurations with 
the same simulation parameters 
are used. The simulation results 
are presented in Table 3. In the 
table, when the search algorithm 
could not find a path, we mark 
the scenario as ‘Path Not Found 
(PNF)’. The observations from 
the experiments are outlined as 
follows:
• The 4D search algorithm 
is superior in finding lower cost 
paths compared to 3D search 
algorithm since the 4D search 
algorithm looks ahead in time 
and tries to find optimal solutions 
based on the movements of the 

UAV model parameters
Total weight 2.500 lb Payload weight 500 lb

Endurance 24 h Max/cruise speed 120 kts, 60 kts

Max flight altitude 30.000 ft Tactical range 200 nm

Cruise fuel consumption 29,16 lb/h 
Ascend fuel consumption 48,52 lb/h 

Descend fuel consumption 14,58 lb/h 

Turn radius 1 nm Ascend/descend rate 1000ft/min

Operational environment model parameters

Field size 60 nm x 60 nm x
31000 ft x 10 hop Wind direction 000° / 090°

Cloud origin location Top of the target Wind speed 0 kts / 20 kts

Region number 125 (5 x 5 x 5) Temperature 70 °F

High resolution successor length 1-2 Goal location altitude 21000 ft

Low resolution successor length Variable 1-5 Start location altitude 13000 ft

Rules Cruise Level, AGL Safe limits 1000 ft above AGL

Table 2. simulation inputs
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dynamic entities.
• If the scenario only consists of static obstacles, then both 

3D and 4D search algorithms performs the same. Since 
static objects do not move, looking ahead in time does not 
change the results.

• The most striking observation is that when the operational 
environment becomes highly dynamic (number of 
obstacles is 16), the search in 3D cannot find a path while 
the search in 4D is successful in finding least-cost paths 
maintaining satisfactory performances. 

• Naturally, the time required to generate the grid and 
conduct the search is higher in 4D grids. 

• The grid generation time is affected mainly by the number 
and size of the obstacles. 

• The search time increases when the locations of the 
obstacles are in the UAV flight path. 

• The grid search time increases as the number of obstacles 
increases. because the algorithm requires more time to 
expand nodes to find a least-cost path. The world becomes 
more complex as the number of obstacles increases.

• In contrast, as the number of obstacles increases, the grid 
generation time decreases since the search space gets 
smaller.

• The search time is longer in the scenarios having a fuel 
consumption objective. As expressed earlier, we used 
EngineSim, an analysis tool for aircraft engines developed 
by NASA. In the EngineSim, the fuel consumption 
computations take time because many parameters are 
used in the calculations.

• The path costs vary depending on the locations and 
mobility of the obstacles. If the obstacles are in the way of 
UAV naturally, the UAV has to move around them. As the 
number of obstacles increases, there is a higher possibility 
that more obstacles are located in the UAV path. 

• When the objective in the scenario is consuming 

minimum fuel (fuel consumption), then the UAV climbs 
to higher altitudes as soon as possible. Since the engine 
module of our UAV model is adapted from EngineSim, 
the UAV acts realistically just as an aircraft would do. 
When the UAV reaches the target position, depending on 
the tasked mission it descends to the optimal altitude for 
the mission. 
When the UAV environment is complex and dynamic, 

meaning that the number of obstacles is high, the number of 
possible paths to target location is limited. Even for certain 
scenarios, there may not be a path to the target location 
depending on the locations of obstacles at a specific time 
instance. In the experiments, the search algorithm utilising a 3D 
grid is incapable of finding paths for the particular scenarios 17, 
19, 21 and 23. In these scenarios, existing locations of obstacles 
block any path to the target. Therefore, the results become 
PNF. However, the 4D search algorithm utilising 4D world 
space representation can find paths in the same scenarios, since 
the algorithm investigates future locations of obstacles. As the 
mobile objects move, new paths emerge. Investigating future 
locations of obstacles enlarges the search space containing 
these emerged paths. This enlarged search may find paths that 
are not found with a 3D grid representation. Figure 4 shows 
the simulation run for scenario 24. This scenario represents an 
example case in which the 3D search algorithm cannot provide 
a solution and the 4D search algorithm is successful in finding 
legitimate least cost paths for all objectives.  Based on the 
results of the experiments, in terms of path costs in all three 
objectives, we conclude that the 4D search algorithm performs 
better in dynamic and complex environments than the 3D 
search algorithm performs. 

In Fig. 4(a), Scenario 24 starts up with 16 mobile objects 
(aircrafts) and the UAV calculates the path to the mobile target 
location. In Fig. 4 (b), the objective of the cost function is 
distance and the UAV calculates the shortest path to the mobile 

Figure 3. screenshot of a simulation run.
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target location. In Fig. 4 (c), the objective of the cost function 
is time and the UAV calculates the path with the shortest time 
to arrive at mobile target location. In Fig. 4 (d), the objective of 
the cost function is fuel consumption and the UAV calculates 
the path to the mobile target location while minimizing fuel 
consumption.

To show the extendibility of the model, we modified 

simulation inputs Performance data

Scenario specifications
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1
0 0 S

3D Static 1.6 0.1 34.02 0.3 0.95 0.3 24.82

2 4D Static 2.6 0.1 34.02 0.3 0.95 0.3 24.82

3
0 0 M

3D Static 1.6 0.1 31.54 0.2 0.87 0.4 23.74

4 4D Static 2.6 0.1 31.54 0.2 0.87 0.4 23.74

5
4 0 S

3D Static 1.2 0.4 36.38 1.2 0.99 1.7 29.06

6 4D Static 1.4 0.4 36.31 2.6 0.99 2.0 29.06

7
4 0 M

3D Static 1.2 0.4 35.26 1.3 0.97 1.6 27.73

8 4D Static 2.1 0.4 35.14 3.6 0.97 2.3 27.23

9
0 4 S

3D Dynamic 1.3 0.1 35.91 0.4 0.99 0.9 28.31

10 4D Dynamic 2.1 2.1 34.04 14 0.97 5.0 27.76

11
0 4 M

3D Dynamic 1.3 0.2 40.60 2.1 1.12 2.8 23.62

12 4D Dynamic 2.1 1.4 29.19 5.1 0.80 4.7 19.95

13
4 4 S

3D Dynamic 1.0 0.3 36.41 1.8 1.1 2.1 29.44

14 4D Dynamic 1.8 5.1 28.90 3.5 1.0 5.3 28.90

15
4 4 M

3D Dynamic 1.0 0.3 41.17 1.5 1.13 4.3 31.67

16 4D Dynamic 1.9 3.1 33.09 12 0.91 15 21.91

17
8 8 S

3D Highly Dynamic PNF PNF PNF PNF PNF PNF PNF

18 4D Highly Dynamic 2 1 35.96 1 0.90 22 23.14

19
8 8 M

3D Highly Dynamic PNF PNF PNF PNF PNF PNF PNF

20 4D Highly Dynamic 2 1 30.82 1 0.76 28 18.70

21
0 16 S

3D Highly Dynamic PNF PNF PNF PNF PNF PNF PNF

22 4D Highly Dynamic 2 1 36.69 1 0.91 12 25.04

23
0 16 M

3D Highly Dynamic PNF PNF PNF PNF PNF PNF PNF

24 4D Highly Dynamic 2 1 34.84 1 0.79 22 23.17

Table 3. simulation results (M: Mobile, s: stationary)

the model for multi-objective planning by implementing the 
weighted cost formula presented previously. Objective weights 
are determined as 0.4 for distance objective, 0.4 for time and 
0.2 for fuel consumption. These weights may be different for 
different missions. Therefore, the weights are adjustable. The 
currents weights are determined based on our interview with a 
domain expert, an experienced UAV pilot. Naturally, the costs 
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are normalised. As observed in Fig. 5, the solution may be 
different depending on the path planning objective.

As a result, it is shown that the path planning approach 
developed in this study provides a successful approach to 
online and offline UAV path planning to meet various and 
multiple objectives. The approach produces optimal, resolution-
complete, and smooth paths in complex dynamic environments. 
In addition, variable length adjacency successors ensure 
smoother paths. The grid dimension, number of obstacles, 
and wind vector are the main factors on path optimality and 
process time. However, the search time increases in complex 
environments as the search algorithm expands more nodes to 
find least cost paths. 

Figure 4.  scenario 24 screenshots: (a) scenario 24 at startup, (b) Objective: distance,  (c) Objective: time, and (d) Objective: fuel.

(a) (b) (c) (d)

Figure 5. The difference in paths between single and multi-objective planning in same scenario: (a) single objective: distance/time, 
(b) single objective: fuel, and (c) Multi-objective.

(a) (b) (c)

The simulation results show important shortcomings of 
3D approaches. When the UAV operates in a complex dynamic 
environment consisting of different types of obstacles having 
different behaviors, the need for a 4D search approach becomes 
inevitable. 

5. CONCLUsION
In this study, we empirically compare the 3D and 4D path 

planning for UAVs in complex dynamic environments. We 
aimed at achieving higher levels of realism by including an 
extensive set of criteria. The criteria include flight dynamics, 
geographical structures, buildings and architectures, danger 
zones, mobile objects, mobile threats, mobile targets, above 
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ground level rule, cruise level rule, wind, air classes, and cloud. 
Some of the criteria (such as wind and air classes) are only 
investigated in some studies while some (cruise level rule and 
cloud) only exist in one or two studies. Furthermore, the current 
operational efficiency issues discussed in UAV Roadmaps61-65 
are also considered. The developed path planning approach is 
capable of finding solutions with respect to multiple objectives 
including distance, time, and fuel consumption. The research 
approach and resulting conceptual model is validated by 
conducting interviews with an experienced military MALE 
UAV pilot and mission planner. 

The main contribution of this study is the empirical data 
supporting the superiority of 4D path planning over 3D path 
planning in UAV research. The superiority becomes obvious 
when the UAV environment is complex and dynamic. because 
a 3D approach may not be able to find solutions as the UAV 
mission environment gets complex and highly dynamic. This 
is shown by running simulations with various scenarios. In 
the simulations, when the number of obstacles reaches to a 
certain number, the 3D approach is unable to find a solution.  
Furthermore, even when the 3D path planning finds solutions 
for different objectives, the 4D path planning performs better 
with higher performance. 
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