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1. IntroductIon
Digital communication in last decade has resulted in 

extensive growth of various applications which involved 
signals of very high bandwidth. Reducing the sampling rate 
of these signals has become a challenge in many wireless 
communication applications. Compressive sensing provides 
reduced and efficient sampling compared to the traditional 
sampling rate.In the field of short range communication, the 
impulse-radio (IR) - ultra-wideband (UWB) signals are the 
most attractive due to their unique properties such as high 
user capacity, fine time resolution as well as low probability 
of interception and detection1,2. But, the major challenges in 
employment of IR-UWB is the power consumption in analog 
to digital converter (ADC) and sensitivity of wide band signals 
toward narrow band interference (NBI).  

According to the Federal Communications Commission 
(FCC), UWB signals are defined as signals having a fractional 
bandwidth greater than 20 per cent or signals having an absolute 
bandwidth greater than 0.5 GHz3. There are two techniques 
to generate a UWB signal. One is carrier based and other is 
carrier-less. Carrier based technique uses spreading schemes 
like frequency hopping or direct sequence and makes the 
architecture complex due to the presence of mixer and other 
circuitry. The carrier-less technique is also known as IR which 
uses transmission of short pulses in time domain and occupies 
the complete frequency band. Its transceiver is simpler than 
the former technique of UWB signal generation. Also, the 
transmit power in IR-UWB can be decreased by transmitting 
the same information over multiple frames, with each frame  

transmitting at a very low power.    
According to Shannon-Nyquist-Whittaker-Kotelnikov 

sampling theorem4,5, a band-limited signal x(t) can be recovered 
fully from its sampled version x(iT) only if ( )max1 2T F≤
, where Fmax is the maximum frequency of the signal. In 
other words, sampling rate should be equal to or greater than 
twice the maximum frequency of the signal to reconstruct it 
completely.But the large bandwidth signals like UWB signals 
which has 3.1 GHz - 10 GHz band, carry less information, 
i.e. they are sparse in nature. If those signals are sampled at 
traditional sampling rate, ADC can be overburdened and it 
consumes lots of power6,7, so they need to be sampled depend 
upon the amount of information contained in the signal. It can 
be achieved by CS theory proposed by Donoho and Candes8,9. 
According to CS theory, the sparse signal can be recovered 
properly with lower than the traditional sampling rate. The 
measurement matrix and reconstruction algorithm play crucial 
role for efficient performance of CS theory.

CS based UWB energy detector which is highly robust 
to NBI is presented in this paper. We have implemented the 
reconstruction based energy detector proposed10 for analyzing 
the effect of NBI on UWB signal. To eliminate the NBI effect 
the digital notch11 is proposed. After eliminating the NBI 
affected measurements from UWB signal, energy detection 
should be similar to the energy detection in the absence of 
NBI. Major contributions of this article can be summarised as 
follows:
• Use of the digital notch11 is proposed, to eliminate the NBI 

effect added in the UWB energy detector proposed10.
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• We show that, the performance of CS based energy 
detector is more effective than the Nyquist rate based 
detector.

• Also, the energy detection and bit error probability of the 
detector in the absence of NBI and after mitigating the 
NBI is analysed.

2.  LItErAturE SurvEy
The field of UWB communication employed with CS 

theory is under tremendous development. The receiver is 
proposed for IR-UWB communication using CS, which is 
characterised by bursty traffic and severe power constraints12. 
The receiver can acquire and track the channel response in 
any of the environmental conditions and severe inter-symbol 
interference. Proposed receiver12 is further extended11 for NBI 
mitigation using notch out method. The CS theory reconstructs 
the sparse signal as well as provides the generalised likelihood 
radio test (GlRT) detector for I-UWB13. The GlRT detector is 
further extended with matching pursuit (MP) algorithm for pilot 
assisted IR-UWB detection13,14. The IR-UWB detector proposed  
is also further extended to suppress NBI using subspace 
detection14,15. The signal can be theoretically sub-sampled by 
projection matrix according to CS theory, but the multiplication 
of matrix and signal needs already sampled received signal. 
The random matrix is not realizable using hardware and under-
sampling is uncontrollable. These problems can be solved by 
replacing random matrix with analog to information converter 
(AIC) in CS measuring projection stage16. But, this method does 
not guarantee the precise reconstruction of sampled signal. 

Novel differential detection method17 is proposed which 
exploits CS framework and optimisation problem is formulated 
to jointly reconstruct the sparse signal and differentially 
encoded data. The differential detection method proposed 
is further extended for multiple symbols using generalised 
likelihood ratio tests18. Methods for channel estimation are 
provided for CS based UWB communication, time delay 
estimation is provided19-21. There are two types of CS based 
UWB energy detectors proposed10. One is direct compressed 
energy detection and other is reconstruction based energy 
detector. In this study, reconstruction based energy detector is 
employed.  

From the above summary, we can say that both the detectors 
are important with their own merits in different situations. But 
these energy detectors are very sensitive to the NBI due to large 
bandwidth symbol. The NBI affected IR-UWB measurements 
can be mitigated using proposed method11,15. The comparison 
between the proposed methods11,15 is described in Table 1. From 
the Table 1, it is evident that notch out approach implemented 
in this paper is superior to the method presented15. The detector 

employed to mitigate the narrow band interference with the 
help of notch out method11. The detector proposed15 requires 
low pulsing rate and perfect timing information as well as 
discrete cosine transform (DCT) only for energy detection. All the 
above limitations are overcome by the method presented in this 
article.

3.  comprESSEd SEnSIng
To convert the analog signal into digital with the traditional 

method, first step is to sample it and then compress by eliminating 
zero or near to zero valued samples. In this process, large power 
consumption is required for sampling the complete signal. 
But he compressed sensing unifies both, the compression and 
sampling processes so it is called as compressive sampling8,9. 
Compressed sensing is a signal processing technique for 
efficiently acquiring and reconstructing a signal, by finding 
solutions to under determined linear systems.

As shown in Fig. 1, in the process of CS, measurement 
matrix and reconstruction algorithm play important role in 
compressing and reconstructing the signal respectively. The 
linear system to be passed through the CS process can be 
considered as,

Y X= Φ                                                                          (1)
where X  is an 1N ×  vector of optimisation variables, Φ is 
an M N× dimensional measurement matrix and Y is an 1M ×  
vector of compressed measurements as M N< . Here, X is 
a sparse vector that contains less number of non-zero valued 
samples than the zero valued samples. 

Figure 1.  process of compressed sensing theory.

The measurement matrix converts the signal as N M→  . 
But measurement matrix should satisfy restricted isometry 
property (RIP) to provide recoverable compressed version of 
the original signal9. For each integer 1, 2,= 

, RIP property 
define the isometry constant sδ  of a matrix Φ  as the smallest 
number such that 

2 2 2
2 2 2(1 ) (1 )s l l s lX X X− δ ≤ Φ ≤ + δ                                     (2)

 
holds for all s -sparse vectors9 X . A vector is said to be 
s-sparse if it has at most s  non-zero entries. This property is 
satisfied by the random matrices like Gaussian, Bernoulli and 
also structured matrix like Fourier10.

The challenging task in CS theory is to recover the original 
signal from incomplete samples. For reconstruction process3, 
X represents the unknown vector and the problem is to find 
X from Y  given Φ . This problem is popularly written with 
2l -norm as,                                             

2
2 2

: arg min
X

P X  such that Y X= Φ                           (3)

Features oka11, et al. Wang15, et al. 

Pulsing rate Independent low

Timing issue Robust Requires perfect timing

Discrete cosine transform Do not require Requires

Domain of CS ensembles Fourier Time

table 1. comparisons of nBI mitigation methods
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The minimum norm solution can be obtained from 2l
-norm but, it measures total energy of the vector X rather than 
handling individual element. It cannot reconstruct the original 
signal properly from compressed version. The number of 
nonzero elements from X can be counted by replacing squared 

2l -norm with an 0l -norm3 as,

0 0
: arg min

X
P X  such that  Y X= Φ                          (4)

The 0l -norm solution provides sparse solution but not  
unique, unlike 2l -norm solution. But, the 1l -norm solution provides 
compromise between 1l -norm and 2l -norm solution. It is closer  
to 0l -norm in terms of sparsity whereas it is closer to 2l -norm 
in terms of uniqueness or being convex. It can be written as, 

1
1 1

: arg min
X

P X  such that  Y X= Φ                           (5)

1P is a convex optimisation problem and can be easily 
solved by a linear programming (lP). 1P is also known as basis 
pursuit (BP)22.

The compressed signal can be recovered exactly under 
two conditions (1) original signal should be sparse (2) the 
measurement matrix should satisfy RIP property. There are 
mainly three types of reconstruction algorithms23 as shown in 
Fig. 2.

First is the greedy pursuit, such as the orthogonal matching 
pursuit (OMP) method24, the stagewise OMP (StOMP) method25 
and the regularised OMP (ROMP) method26, the compressive 
sampling matching pursuit (CoSaMP) method23, where these 
methods build up an approximation one step at a time. Second 
is the convex relaxation algorithm, such as the interior-point 
method27, the gradient projection method28 and the iterative 
thresholding algorithm29 and the last is the combinatorial 
algorithms that acquire structuredsamples of the signal that 
support rapid reconstruction by group testing23. Each algorithm 
has its own pros and cons in a particular reconstruction problem. 
So the reconstruction algorithm should be chosen according to 
the requirement in specific application.

4. SyStEm modEL
The system described in Fig. 3 transmits the thj information 

symbol with m − ary pulse position modulation (PPM). In 

PPM, the delay is added in the signal for modulation which is 
easy in implementing. To transmit the thj information symbol, 
consider a signal ( )jU t containing FN  frames of length FT
, so that the signal length becomes F FT N T= ×  and delayed 

by F
m

TT
m

=  for PPM modulation. The transmitted thj  symbol 

can be represented as ( ) ( )( )
1

0

FN

j F F j m
i

U t b t i jN T c T
−

=

= − + −∑ , 

where (0,1 , , 1)jc m∈ −  and ( )b t  is second derivative of 
Gaussian pulse with unit energy of duration b mT T

. If ( )h t is 
represented as impulse response of Gaussian communication 
channel, then the received signal is,

( ) ( ) ( ) ( )* ( )  j j jr t U t h t w t I t= + +   
                              (6)

where ( )jw t  and ( )jI t is the additive noise and interference 
symbol of bandwidth BI , corresponding to thj  information 
symbol respectively and ( ) ( )* ( )j jU t h t g t= is the received 
pulse waveform of bandwidth  BU  with duration gT .

For Nyquist-rate sampling of the symbol, we take N
samples per frameperiod FT , whereas N m  samples for each 
slot. Then the thi  sampled frame corresponding to thj  symbol 
is given by,

, , , , i i i iF
j k F j k j k j k

kTr r iT g w I
N

 = + = + + 
                            

(7)

for 0,1, , 1k N= − . We assume that the NBI zero mean, unit 
power elements whereas, ,

i
j kw has independent identically 

distributed (i.i.d.) zero mean Gaussianwith variance 2σ . The 
sampling of received signal using Nyquist-rate consumes large 
amount of energy due to sparse nature of the signal. The zero 
or near to zero valued samples produced after applying Eqn. 
(7) are eliminated. This wastage of energy can be removed by 
replacing Nyquist sampling with compressed sampling. 

For compressing the signal, measurement matrix Φ  
is so chosen that it contains rows which are approximately 
orthogonal to each other10. Now, the received signal is applied 
to M N×  matrix Φ  to get compressed version of signal. For 

thi  frame, applying CS to Eqn. (6), we get,

Öi i i i i
j j j j jD r G V Z= = + +                                                 (8)

where i
jD is the 1M ×  compressed  measurement vector.

Figure 2. Classifications of reconstruction algorithms in CS theory.
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Similarly i
jV and i

jZ  are the compressed versions of noise 
and NBI symbol respectively. Along with huge advantages, 
the UWB symbol has sensitivity towards NBI due to its wide 
bandwidth feature. The UWB measurements are deteriorated 
due to addition of NBI symbol and UWB symbol.

The ‘notch out’ method11 to suppress the NBI affected 
measurements from compressed vector is applied. In this 
method, first step is to choose Fourier ensemble of magnitude 
1 N and its frequency is selected from ,

2 2c cF FΩ Ω − + 
 

, which are decoherent with UWB signal and coherent with 

NBI, to ensure that only few measurements are affected by 
NBI. Then, we implement notch to mitigate NBI affected 
measurements. For at most 1 NBI we find, 

{ }0,1, , 1
argmax s

s M
s D

∈ −
=



                                                           (9)

Now, take ~ BIA α
γ

, where BU
M

γ = is test function 

spacing and α  is the safety factor lies between 4 to 8. The NBI 
mitigated measurements can be obtained by notching out 1A +  
measurements around the index s . If 1IN NBI>  is expected 
in the signal then this notching procedure is performed for 

IN  largest values from compressed measurement vector D. 
To reduce the time required for reconstructing the frames 
individually, the NBI eliminated measurements of FN  frames 
are averaged and applied to approximated massage passing 
(AMP) algorithm to reconstruct the original signal10. The 
iterative thresholding (ITH) algorithm has better simplicity and 
speed than other reconstruction algorithms, but its performance 
is not good in sparsity-undersampling (SU). However, the AMP 
performs well in SU along with better speed and simplicity. 
The AMP can be explained briefly for thn  iteration as follows,            

[ ] [ ] [ ] [ ]( )1 ,  n n n nT
j j jy S y x+ = + Φ τ                                      

   (10)

where
[ ] [ ] [ ] [ ] [ ] [ ]( )1 1 1 11  ,n n n n n nT
j j j j j jx D y x S y x− − − −′= − Φ + +Φ τ

µ     (11)

Here τ  is iteratively updating threshold and ( )S ′ •  is the 
average of derivative all samples of soft-thresholding over N  
samples. The value provided by n

jy  is the reconstructed vector 
of signal. Now, these samples are provided to reconstruction 
based energy detector, which is provided10. For mN  non-zero 

samples, detection is done as follows, 
 

( )
21 1

0 0

1maxˆ  
m F

j
k m

N N
R ED

kj c p i iN c N pF

bc
N

− −
−

=

∨

= + +

  =      
∑ ∑                 (12)

The Nyquist rate energy detection is obtained by replacing 
reconstructed samples with Nyquist rate samples12. For analysis 
of energy detection, the bit error probability (BEP) of both 
Nyquist-rate energy detector and reconstruction based energy 
detector is given in same10.

22
( )

12 2 2 2 2

2
21 2 1, ; 1;

2 4
2 4

N

R BEP r r

r w wr

w

NÃ
N NP F

N NÃ

−

 
     σ σ σ = − × +  σ + σ σ + σ      
    

  

(13)

where ( )12 , ; ;F ⋅ ⋅ ⋅ ⋅  is the Gaussian hyper geometric function.  

22
0 0 0

12 2 2 2 2
0 0 0 0

2
21 2 1, ; 1;

2 4
2 4

N

FN BEP

F F

NÃ
N NP F

N NÃ

β β−

β β

 
     σ σ σ = − × +    σ + σ σ + σ       
    

  

(14)

where
2

2
0 1

FNβ

 σ
σ + 

 
 and 

2
2

0F
FN

 σ
σ  

 
 .

5.  ExpErImEntAL rESuLtS And 
dIScuSSIon
This section presents the simulation results using the 

detector developed in previous section. We consider, the UWB 
signal is transmitted along Gaussian distributed physical 
channel with the elements having zero mean and unit variance. 
The received signal is compressed by applying it to the random 
measurement matrix. let the number of interference, 1IN =
for experiment purpose. But, we can simulate this detector 
for multiple numbers of interferences. In AMP algorithm, the 
threshold policy is in the form of [ ] [ ]n n

wτ = δσ  , which is infeasible 
in practice. So, threshold can be updated as suggested in9,

[ ] [ ] [ ] [ ] [ ]( )1 1 1 11 ,n n n n nT
k kS x y− − − −′τ = τ + τ + Φ τ

µ              
 (15)

where τ  is a constant.
For analysis purpose, we have considered four detectors. 

The first detector is based on Nyquist rate sampling, the second 
is based on compressive sampling i.e. reconstruction based, the 
third detector is having NBI effect and in forth detector the NBI 
mitigation method is implemented. All the four detectors are 
compared with each other with respect to signal to noise ratio 
(SNR in dB) in Figs. 4 - 7 and with respect to compression ratio 
(mu) in Figs. 8 - 11. All the detectors have same transmission 
parameters. The transmitted second derivative of Gaussian 
pulse has duration of 1 ns. For experimentation purpose, we 
take frame length as 100 ns and number of frames in one 
symbol is 30, so the duration of symbol is multiplication of NF 
and TF . For every frame, the number of samples is considered 
to be 200. 

All the detectors are analysed with Eqns. (12) and (13) for 
energy detection and bit error probability respectively. Due to 
implementation of orthogonal random matrix at compression, 

Figure 3. Block diagram of nBI robust uWB energy detector.
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the plot of ABEP is following the plot of ED in all the simulated 
results.     

From Fig. 4 and Fig. 8 we can observe that, there is large 
difference between energy detection of Nyquist rate based 
and compressive sampling based energy detectors. The CS 
based energy detectors gives better energy detection than the 
traditional sampling based energy detectors. After adding the 
NBI symbol with UWB symbol, the effect of interference can 
be observed in Fig. 5 and Fig. 9. The NBI affects the UWB 
signal energy severly. 

Then the notch out method is implemented to 
eleminate the NBI affected measurements from compressed 
measurements. After eliminating the NBI effect, it is compared 
with the detector having NBI effect in Fig. 6 and Fig. 10. The 
comparison shows that the energy detection after employing 
digital notch is improved. The Fig. 7 and Fig. 11 shows that 
the energy detection before adding NBI is similar to the energy 
detection after mitigating NBI. It presents the efficiency of 

Figure 5. Effect of nBI on reconstruction based energy detector 
w.r.t. Eb/no.

Figure 6.  comparison of detectors in the presence of nBI and 
after mitigating nBI w.r.t. Eb/no.

Figure 7. comparison of detectors in the abcence of nBI and 
after notching out nBI w.r.t. Eb/no.
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Figure 4. comparison of nyquist rate and reconstruction based 
energy detectors w.r.t. Eb/no.

Eb/No (dB)

B
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Figure 8.  comparison of nyquist rate energy detector and 
compressed sampling based energy detector w.r.t. 
mu.

mu

B
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the notch out method to remove the NBI from the compressed 
version of the signal. It is the evident that the notch out method 
removes the NBI successfully.    

6.  concLuSIonS 
In this study, authors presented the CS based UWB energy 

detector which mitigate the NBI affected measurements. We 
have analysed the performance of the presented energy detector 
by using theoretical expression of energy detection and bit 
error probability with respect to signal to noise ratio (SNR) as 
well as compression factor ( )µ . The experimental results show 
that the presented system performs efficiently in the presence 
of NBI. Also it has been shown that, the reconstruction based 
energy detector performs better compared to the Nyquist rate 
based energy detector. The presented system can be further 
implemented with hardware by using analog to information 
(AIC) and CS.
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