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nomanclature 
BVR Beyond visual range
DCM Direction cosine matrix 
CDF Cumulative distribution frequency
CG Centre of gravity
DOF Degree of freedom
EKF	 Extended	Kalman	filter	
GBPN G-biased proportional navigation
LOS Line of Sight
LV Local vertical
MC Monte Carlo simulation
MMI Mass moment of Inertia
ND Normal distribution
PIP Predicted impact point
PN Proportional navigation
SDINS Strap down inertial navigation system
SP Singular perturbation guidance law
TPBVP Two point boundary value problem
UD Uniform distribution

1. IntroductIon
In air-to-air engagement, it is desirable to launch an 

interceptor (pursuer) against a target (evader) when it is 
beyond visual range (BVR) of the pilot of the launch aircraft. 
The evader is tracked by on-board radar and the information 
is communicated from launch aircraft to the pursuer through a 

data	link.	During	the	midcourse	phase	of	flight,	the	objective	
of the guidance system is to reduce the line-of-sight (LOS) 
separation between the pursuer and evader and to place it 
within the seeker lock-on range. Classical guidance laws 
like proportional navigation (PN) perform well for short and 
medium range application. The aim of the present investigation 
is to study the singular perturbation (SP) based guidance law 
as a viable alternate to the conventional guidance laws for 
midcourse application in a realistic pursuer evader air-to-air 
engagement. The SP approach gives real time approximate 
solution to optimal control problem and eliminates the need 
for extensive computations1. An excellent historical review of 
SP theory as it has developed over the years was discussed 
by  Naidu and Calise2 and O’malley3. The paper on SP-based 
guidance to minimise the miss distance in real time for short 
range air-to-air interception, by Sridhar and Gupta4 reported 
that	it	provides	a	significant	improvement	over	PN.	Calise5 has 
used SP method for on-line optimal control of an aircraft as 
a minimum time interception problem. Later, by applying the 
same technique for BVR interception, Cheng and Gupta6, Sheu7, 
et al. and Weston8, et al. have reported that by proper trajectory 
shaping during midcourse, almost 25 per cent increase in 
effective launch range over PN guidance could be achieved, 
Subsequently, Menon and Briggs9, Kee10, et al. and Raikwar11, 
et al. reported the superior performance of near optimal SP 
guidance law over PN. Sigal and Ben-Asher12 computed SP 
based midcourse guidance command and optimum initiation 
time	of	second	pulse	of	a	tactical	flight	vehicle	(FV)	with	pulse	
rocket motor. Chandrakant13 has designed midcourse guidance 
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law of an air to surface FV. Here the path constraints have been 
accounted for by constructing the optimal altitude in the outer 
layer solution. The boundary layer correction on fast variable 
also have been done using feedback linearisation.

In all the above cited references the SP guidance law has 
been developed by optimising different performance indices 
using three degrees of freedom (3 DOF) point mass model of 
pursuer and evader. But the intricacies of implementation of 
SP guidance law in realistic six degree of freedom (6 DOF) 
simulation model along with detailed results are not reported. 
This study bridges this gap by addressing several of these 
practical issues. The paper’s contributions are : 
(i)  Revisit of SP guidance law derivation along with 

algorithmic details as extension of6,11 
(ii)  A novel real time implementable algorithm for computing 

optimum altitude, critical for a successful on-board 
implementation of the SP guidance

(iii) Several implementation issues for realistic 6 DOF 
simulation with SP guidance law and 

(iv) Pursuer has to always within the maximum beam width 
( )020± of the data link of the launch aircraft (Fig. 1). 

4
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The state variables (x,y,z) are downrange, cross range and 
altitude of the pursuer in the inertial frame, ( )2 (2 )E V g h= +
is	 the	 specific	 range,	 V is pursuer velocity, γ 	 is	 the	 flight	
path angle, f  is the heading angle, T is the thrust, D is the 
drag experienced by the pursuer, m is the purser mass, g is 
acceleration due to gravity, η is the total load factor and σ  
is the orientation of the load factor (bank angle). The control 
variables u are ( ),η σ .	Now	let	us	define	the	load	factor	as

L L
W mg

η = =                                                                   (2)

where L is the lift and W is pursuer weight. At any instant of 
time V should be interpreted as

( )2V g E h= −                                                      (3) 
In the present analysis the aerodynamic drag is calculated 

as follow:
2
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m g k
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= 21 ;
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Q V= ρ
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N

k
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Here dk and 0DC  are functions of Mach number M and ρ is 
function of altitude h.

( );d dk k M= 0 0 ( , );D DC C M h= ( )hρ = ρ          (5)
The in-flight	 evader	 state	 is	 used	 instead	 to	 predict	 the	

point of interception (PIP) which is treated as a terminal 
condition for the system of Eqn (1). The terminal conditions.

( , , )x y h ( )ft = ( , , )f f fx y h                                            (6)

2.1 optimal control Formulation of SP Guidance
The performance index for optimal guidance problem to 

be analysed is 
Minimise  

0

2(1 )ft

t
J k dt= + η∫                                       (7)

where ( 0t , ft )	 are	 initial	 and	 	final	 time,	 η  is the resultant 

Figure 2. Pursuer configuration in state space for SP guidance 
law.

Figure 1. air-to-air engagement (pursuer, evader and launch 
aircraft).

This important practical constraint has also been modelled 
in the present problem. The noisy radar measurements from 
launch aircraft radar during midcourse phase has been processed 
by	 extended	 kalman	 filter	 (EKF)	 based	 estimator	 in	 closed	
loop to estimate its current position and velocity components. 
This Kinetic information is communicated to the pursuer from 
launch aircraft through this data link and it form the inputs to the 
midcourse guidance algorithm to generate its lateral acceleration 
(latax) demand along the yaw and pitch planes. Robustness of 
the proposed midcourse guidance algorithm has been shown 
against different system uncertainties and sensor noise variation 
through large number of Monte Carlo (MC) runs. 

2. derIvatIon oF SP GuIdance law
The governing equations of motion of pursuer as 3D point 

mass	model	assuming	flat	earth	is	(Fig.	2)

1( , ) cos cosx f x u V= = γ f   ; 0 0( )x t x=

2 ( , ) cos siny f x u V= = γ f   ; 0 0( )y t y=

3 ( , ) sinh f x u V= = γ            ; 0 0( )h t h=
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load factor and k ( 0 1k≤ ≤ ) is the weighting factor. Also 
the guidance solution should satisfy the following inequality 
constraints.

maxη ≤ η and maxh h≤                                                      (8)
where maxη  is the maximum allowable load factor on the 

pursuer and maxh  is the maximum height of the pursuer so that 
its LOS wrt launch aircraft should be less than the maximum 
solid angle of the data link 0( 20 )± .

Solution to the optimal control problem can be obtained 
by	defining	a	Hamiltonian1 as

2 2(1 ) ( , , ) (1 )T TH k f x u t kξ ξ= λ ξ + + η = λ + + η                (9)
where ( , , , , , )Tx y h Eξ = f γ  and ( , , , , , , , )T

x y z x x x xξλ = λ λ λ λ λ λ λ . 
Here ξλ  elements are Lagrange multipliers which satisfy

T
H

ξ

 ∂
λ = − ∂ξ 
                                                              

(10)
( )( ) , , ,0,0,0

T

f f f ft x x y y z zξλ = − − −

xλ and yλ  are constraints since H does not depend explicitly 
on x and y. the optimality conditions are

0;∂Η
=

∂η
0∂Η

=
∂σ

                                                           (11)

The	transversality	condition	due	to	free	final	time	is	
( ) 0fH t =                                                                    (12)

where H is	time	varying.	Offline	solution	of	a	12-th	order	two	
points boundary value problem (TPBVP) resulting from the 
above formulation, is not amenable to real time implementation. 
This facts lead us to other solution methods such as the SP 
theory based on time scale separation. 

2.2 time-Scale Separation
In SP theory the derivatives of some of the states are 

multiplied	by	a	small	positive	scalarє14

( , , , ),x f x z t= ε ( )0( ) 0x t x= , nx R∈                          (13)

( , , , ),z g x z tε = ε ( )0( ) 0z t z= , mz R∈                         (14)
The	scalar	є	is	a	modelling	tool.	When	we	setє	=	0,	 the	

dimension of the state space of Eqns. (13)-(14) reduces from 
n+m to n because the differential Eqn. (14) consisting of zε  
degenerates into algebraic or transcendental equation 

( )ˆ ˆ0 , ,0, ,z g x z tε = = ˆ mz R∈                                        (15)
In the present problem, there exists a clear separation in 

time scale among all the state variables which canbe divided into 
three groups6,11 such as (i) Slowest: ( ), ,x y E , (ii) Slow: h, and 
(iii) fast: ( γ , f ).	Here	at	first	the	slowest	variables	are	solved	
assuming fast variables to be in equilibrium. Then, the slow 
variable along with the slowest variable solutions( )ˆˆ ˆ, , ,x y E h , 
are solved assuming fast variables be in equilibrium. Finally the 
last fast variable ( ),γ f  are solved along with the slowest and 
slow variables( )ˆˆˆ ˆ, , ,x y E h . Note that results obtained from each 
individual layer is not optimal because they do not satisfy the 
boundary condition imposed in Eqn (6). So an ad hoc boundary 
layer correction needs to be carried out in ( )ˆ ˆ.h γ  in the second 
and third layer for adjusting evolved near-optimal altitude and 
flight	path	angle	to	final	values	as	given	in	Eqn	(6).

2.3 outer layer Solution
In section 2.2, the overall SP algorithm has been described 

eliciting the importance of timescale separation. Now let us 
derive the relevant equation for real time solution of present 
problem.

2.3.1 Slowest Time Scale
The slowest variable are ( , , )x y E . Since ( ), ,h f γ are faster, 

according to Eqn. (15), 

sinh Vε = γ =0; sin
cos

g
V
η σ

εf =
γ

 =0; ( cos cos )g
V

η σ − γ
εγ = =0  (16)

So, in the equilibrium condition

1 0γ =   1 0σ =   1 1η =                        (17)
The simplified	Hamiltonian	Eqn.	(9)	is	then

1 1
1 1 1 1 1 1 1 1

( )
cos sin 1x y E

V T DH V V k
mg

−
= λ f + λ f + λ + +

  
(18)

The subscript ‘1’ denotes the state and control variables 
in a slow time scale. In this time frame 1h and 1f may be 
considered as pseudo control variables. The optimal value of 

1f  is given by

1

1

0
H∂

=
∂f

; 1
1

1

tan y

x

λ
f =

λ
                                                (19)

Since 1xλ and 1yλ are constants in Eqn. (10), 1f is also a 
constant. Now using Eqns. (1) and (6) we get

0 01
1

1 0 0

( ) / ( )
tan

( ) / ( )
f go f

f go f

y y t y yy
x x x t x x

− −
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                      (20)

The transversality condition in Eqn. (12) implies that

( ) ( ) ( )1 1
1 1 1 1 1 1 1

( )
cos sin 1 0f

x f y f E

V t T D
V t V t k

mg
−

λ f + λ f + λ + + =  
 

(21)
Again, based on Eqn. (10),

( )1 0E ftλ =                                                                   (22)
So using Eqns. (21)-(22) we obtain 

( )
( )

1
1

1

1 cos
x

f

k
V t

+ f
λ = −  ; 

( )
( )

1
1

1

1 sin
y

f

k
V t
+ f

λ = −               (23)

1Eλ now can be obtained from Eqns. (21) and (23). But 1( )H t
is time varying and not autonomous. To permit 1( ) 0H t = the 
concept of average thrust avT and avm  is very crucial6,9. Which 
will be discussed later. 

H1(t)=0
( )1 1

1 1 1 1 1 1 1cos sin 1 0av
x y E

av

V T D
V V k

m g
−

λ f + λ f + λ + + =        

(24)
Using Eqns. (23)-(24), we obtain

( )
( )1

1 11

1 1 1av
E

av f

m g k
T D VV t

 +  λ = − 
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                                (25)

where ( )1 fV t  is 1V at the ft . The pursuer forward acceleration 
can be approximately written as

( )1 11
1

fav

av go

V t VT D
V

m t
−−

= =                                           (26)
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Based on Eqns. (25)-(26) we can rewrite the expression 
for 1Eλ as

( )
( )1

1 1

1 go
E

f

g k t
VV t

+
λ = −                                                        (27)

But calculation of 1Eλ  from Eqn. (27) needs time-to-go 
( )got

 
estimation which will be discussed later. Final step is 

the computation of optimal altitude 1h based on the equation
1

1

0
H
h

∂
=

∂
. This yields 1

1 1

H g
h V

∂
=

∂  
and

1 1 1
1 1 1 1 1 1

1 1 1 1

( )
cos sin 0x y E E

T D V Dg g g
V V mg V mg h

− ∂
−λ f − λ f − λ − λ =

∂  
 (28)

After eliminating ( )1 1,x yλ λ
 
based on Eqns. (23) and (28) 

we obtain 

( )
( )

2
1 1 1

1
11

1 ( )
0E

f

g k T D V D
mg mg hV t

+  − ∂
− λ + = ∂ 

                    (29)

Again, after eliminating 1Eλ  based on Eqns. (27) and (29), 
we obtain 

1 1
1 2

1 1

( )
go

D mV gT D
h t V

 ∂
= − + −  ∂  

                                     (30)

Equation (30) has to be solved to obtain the optimal h. 
Here ( ),D D V= ρ  along with ( )hρ = ρ  and 

( ) ( )2
2 2 2 2

0 0 1 0
2
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12 2
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D Di D
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 

The optimal height 1h can be obtained by optimising the 
cost function based on Eqn. (30).

( ) ( )
2

11
1 1 2

1 1

av
h av

go

m VD gJ h T D
h t V

  ∂  = + + −  
∂    

       (32)

where, 1

1

D
h

∂
∂

 is obtained from Eqn. (31). Cost function Eqn. 

(32) is optimised to obtain 1h using Newton method.

( ) ( )
1

2
1, 1 1,
ˆ ˆ

k k h h kk
h h J J

−

+
 = − ∇ ∇                                  (33)

Change and Gupta6 as well as Raikwar11, et al. used 
approximate algorithm for calculation of optimal 1h . Present 
algorithm is computationally slightly more complex but 
more accurate. Initial guess altitude 1h is supplied as input.
Subsequently, 1h obtain from the previous guidance step is 

used as initial guess for current guidance computation step. 
For satisfying the inequality constraint as given in Eqn. (8), 1h
is considered by maxh . Then, for current (h, V) of pursuer, 1V at 
altitude 1h 	may	be	obtained	from	specific	energy	conservation	
relation 

2 2
1

12 2
V Vh h

g g
+ = +                                                          (34)

2.3.2 Slow Time Scale 
The	slow	time	scale	is	defined	by	the	altitude	(h) dynamics 

which is faster than the dynamics of ( ), .x y E but slower than
( ),γ f . To solve for the altitude dynamics( )1 1 1, ,x y Eλ λ λ from 
the slowest time scale are used. Since ( ),f γ are faster than h 
can be assumed in equilibrium 

sin
cos

g
V
η σ

εf =
γ

 0= ; 
( )cos cosg

V
η σ − γ

εγ = 0=        (35)

2 0σ =   2 2cosη = γ      
The simplified Hamiltonian Eqn. (9) in the present context is 

( )
2 1 2 2 1 1 2 2 1

2 2 2
2 2 2 1 2

cos cos cos sin

sin 1 cos

x y

h E

H V V

V T D
V k

mg

= λ γ f + λ γ f +

−
λ γ + λ + + γ

       (36)

where subscript ‘2’ denotes slow time scale. Variables and
( )2 2,V D are current pursuer speed and drag. 

The control variable in this time frame is 2γ . The 
optimality condition is

2
1 2 2 1 1 2 2 1

2

2 2 2 2 2

0; sin cos sin sin

cos 2 cos sin 0

x y

h

H V V

V k

∂
= −λ γ f − λ γ f

∂γ
− λ γ − γ γ =

       (37)

After elimination of the Lagrange variables through Eqns.  
(23), (37) reduces to

( )
2 2

2 2 2 2 2
1

sin (1 )
cos 2 cos sin 0h

f

V k V k
V t

γ +
+ λ γ − γ γ =     (38)

Therefore,

( )
2

2 2
21

2 cos(1 ) tanh
f

kk
VV t

 γ+ λ = − − γ
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                            (39)

Additional	 condition	 for	 free	 final	 time 2 ( ) 0H t = and 
Eqn. (37) gives

( ) ( )
( )

( )
( )

2
22 2 2 2

2
1 1 2

2 2 2
2

1 1

(1 ) cos (1 ) sin
2 sin

cos

1
1 cos 0

f f
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k t V T D
k
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        (40)

Which	simplifies	to
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( )2 222

2
1 2 1 1

1(1 )
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avf f

k t V T Dk V k k
mV t VV t
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 (41)
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Putting 2 2
2 2sin (1 cos )γ = − γ and neglecting the cubic 

terms, from Eqn. (41) we get

( ) ( ) ( )1 2
2

2 1

1 2
sec

1
f go av

av

V t t T Dk
k V V m

 −+
 γ = −

+  
                  (42)

This equation gives the value of 2γ . Note that in Eqn. 
(42) 1V is pursuer velocity at optimal altitude 1h , 2V and 2D are 
current pursuer speed and drag.

2.3.3 Fast Time Scale
( ),f γ define	the	fast	time	scale.	The	Hamiltonian	can	be	

written as 

( )
3 1 2 3 3 1 2 2 1 2 2 3

2 3 23 3
1 3 3 3

2 3 2

cos cos cos sin sin

sin
1

cos

x y h

E

H V V V

V T D g g k
mg V Vf γ

= λ γ f + λ γ f + λ γ

− η σ
+ λ + λ + λ + + η

γ
(43)

where subscripts ‘3’ denotes the variables in the fast time scale. 
I 3D is the current drag of the pursuer.The original guidance 
problem control variables are ( )3 3,η σ . The optimality 
condition is  

3

3

∂Η
∂η

=		 ( )3 2
3 3 3 1 3 3 3

2 3 2

sin
cos 2 2 0

cos E i
Vg g D k

V V mgf γ

σ
λ + λ σ + λ − η + η =

γ  
 (44)

where 3iD  is the pursuer induced drag at current time.  Other 

optimality condition 3

3

0
∂Η

=
∂σ

Which yields

3 3 3 3tan cosf γλ = λ σ γ                                                   (45)
Eqns. (44) and (45) together give 

2 3
3 1 3

2 3

1 2
cos

i
E

V Dg k
V mgγ

 
λ = λ − η σ  

                            (46)

Let	us	define

2 3
1

i
E

V D
k

mg
 

Γ = λ − 
 

                                                     (47)

where iD is given in Eqn. (4). From Eqns. (45) and (46) we 
get 

2
3 3 32 cos

V
gγλ = Γ η σ ; 2

3 3 3 32 sin cos
V
gfλ = Γ η σ σ     (48)

Now, given current ( 3γ , 3f ) and desired (optimal) ( 2γ , 
1f ) the orientation of the current velocity vector V2 and the 

desired velocity vector have to be obtained. The direction 
cosine matrix (DCM) of the current and desired velocity vector 
are

3 3 3 3 3

3 3

3 3 3 3 3

cos cos cos sin sin
sin cos 0

sin cos sin sin cos

c
iC

γ f γ f γ 
 = − f f 
 − γ f − γ f γ 

2 1 2 1 2

2 2

2 2 2 2 2

cos cos cos sin sin
sin cos 0

sin cos sin sin cos

d
iC

γ f γ f γ 
 = − f f 
 − γ f − γ f γ 

          

 (49)

Given the current and desired velocity vector ( ),c dV V , 

their corresponding direction cosines ( )ˆ ˆ,c du u , the turn angle 
(total	 angle	 through	 which	 flight	 path	 must	 be	 changed)	 is	
given by,

( )3 2 3 1 3 2ˆ ˆcos cos cos cos sin sinc d∆y = u ⋅ u = γ γ f − f + γ γ  
  (50)

Assuming the difference ( )3 1f − f in the above Eqn. (50) 
to be very small yields

( ) ( )3 2 3 2cos cos∆y = γ − γ ⇒ ∆y = γ − γ                     (51)
The lift vector is perpendicular to ˆ cu and the optimal lift 

vector should be in the plane containing ( )ˆ ˆ,c du u . In Fig. 3 
another	coordinate	system	has	been	defined.	Let	this	coordinate	
system have 'x axis in the direction of the velocity vector of 
the pursuer, 'h axis in the plane containing the h axis (Fig. 2) 
and the velocity vector V and perpendicular to V. The 'y axis is 
defined	automatically	to	complete	the	right	handed	coordinate	
system. Now referring to Eqn. (49) we transform the velocity 
in the desired frame ( )1 2,f γ to the current velocity in the local 
vertical (LV) frame ( )3 3,f γ as follows:

[ ]2 2 1 2 1 2cos cos cos sin sin
T T

di dxi dyi dziV V V V V = = γ f γ f γ 


;

' ' '

T
c

c i di dx dy dz
V C V V V V = =  
 

                                          (52)

After some algebraic manipulations, we obtain,
( )' 2 3 2 1 3 2 1sin cos cos cos cos sin

dy
V V= − f γ f + f γ f            (53)

( )' 2 3 3 2 1 3 3 2 1 3 2cos sin cos cos sin sin cos sin cos sin
dh

V V= − f γ γ f − f γ γ f + γ γ

Hence, the desired lift orientation angle in the current 
LOS plane is (Fig. 3)

'

' '

3 2 2
cos ;dh

dy dh

V

V V
σ −

+
 

'

' '

3 2 2
sin dy

dy dh

V

V V
σ −

+
                  (54)

Additional condition related to free terminal time H3(t)=0 by assuming T and m to be avT and avm may be obtained using 
Eqn. (44) and the values of ( )1 1 1 2 3 3, , , , ,x y E h f γλ λ λ λ λ λ as given 
in Eqns. (23), (25), (39) and (48). This condition is 

( )
( )

( )
( )

( )
( )

( )

2 3 2 2 3

1 1 2

2 32
2

1 1

1 cos 1 sin sin
cos

1
2 sin

f f

go av

avf

k V k V
V t V t

k t V T D
k

mVV t

+ γ + γ γ
− −

γ

+ −
+ γ −

( )2 2 2
3 3 3 3 3 3 3 31 2 sin 2 cos cos cos 0k+ + η + Γη σ + Γη σ η σ − γ =

(55)
From which

( ) ( )
( )

( )
( )

( )

( )

2 3 2 2 32
2

2 1 1 1

2
3 3 3 2

11 cos
2 sin

cos

1 2 2 cos cos 0

go av

avf f

k tk V V T D
k

mV t VV t

k

++ γ − γ −
− + γ −

γ

+ + + Γ η + Γη σ γ = (56)
Which,	on	simplification,	using	Eqn.	(42)	yields	

( )
( ) ( )

( ) ( )

2
3 3 3 2

2
2 3 2 2

2
2 1 3 2

2 2 cos cos

1 sin
2 sin 2 0

cos cosf

k

k V
k k

V t

+ Γ η − Γη σ γ +

+ γ − γ
+ γ − =

γ γ − γ

       (57)
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Further	simplification	and	approximation	yields	

( ) ( )
( ) ( )

( )

2
3 3 2 3

2
2 3 22

2
2 1

2 2 cos cos

1
2 cos 0

cos f

k

k V
k

V t

+ Γ η − Γ σ γ η

+ γ − γ
− γ + =

γ

                      (58)

Neglecting lower order terms and using Eqn. (51) the 
above equation yields the solution for 3η as

( )
( ) ( ) ( )222 2

3
1

1 sec
2f

k V
kV t

 + γ
 η = − ∆y

+ Γ  
                            (59)

2.4 boundary layer correction 
Optimal altitude 1h obtained by optimising cost function in 

Eqn. (32) issuboptimal because it does not satisfy boundary 
condition in Eqn. (6). So ad-hoc boundary-layer correction on 
optimal altitude6, 11 *

1h is given by 
( )*

1 1 1 h h h hk r k r
fh h e h e− −= − +                                           (60)

where, hr is the horizontal range from pursuer to PIP and fh is 
altitude of PIP. As suggested in11

hk ε  [0.00003, 0.03]                                      (61)
Ad-hoc boundary-layer correction on optimal 2γ  

Eqn. (42) is given by6, 11

( )*
2 2 1 hk kγ γγ = γ + − γ                                      (62)

where, 2γ is	 optimal	 pursuer	 flight	 path	 angle, hγ is 
flight	path	angle	of	the	PIP	from	the	pursuer	location	
and kγ is a constant to satisfy11

( )
( ) [ ]ker

0 ker

0,1see
h

see

r r
k

r r
−

= ε
−

                                  (63)

where r is the instantaneous distance from the pursuer 
to the evader, 0r is distance from the pursuer to the 
evader at the start of the midcourse guidance and rseeker 
is the seeker lock-on range. The schematic diagram 
of the SP based midcourse guidance law is shown in 
Fig. 4.

2.5 computation of  ( ),av avT m
Time	varying	Hamiltonian	can	be	made	H	(t)	=	0	

by introducing average thrust and average mass. 

( )1 ft

av t
go

T T t dt
t

= ∫ ; ( )1 ft

av t
go

m m t dt
t

= ∫                     (64)

where t is the current time and ft is the predicted intercept time.

2.6 SP algorithm for midcourse Guidance 
The analysis given above leads to the SP midcourse 

guidance algorithm which is given below.
Step 1:	 Define	 pursuer	 and	 evader	 initial	 conditions

( )0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , , ,t t t t t tx y h V x y h Vf γ f γ .
Step 2: If pursuer-evader distance is less than the seeker lock-

on range, switch to terminal guidance.
Step 3: Calculate got and PIP ( ), , .f f fx y h 15

Step 4: Calculate optimal heading angle to the PIP, using Eqn. 
(20).

Step 5: Determine angle hγ from pursuer to PIP. where
( )01tan f

h
h

h h
d

−
 −
 γ =
  

. hd  is PIP-pursuer horizontal distance.

Step 6: Determine pursuer optimal altitude 1h by optimising 
cost based on Eqns. (20), (32) and (33).

Step 7: h correction (boundary layer) ( )*
1 1 1 h h h hk r k r

fh h e h e− −= − +

where, hk ε  [0.00003, 0.03]
Step 8: Constraints *

1h by maxh ((8)).Then, using Eqn. (34) 

obtain ( )2
1 12V V g h h= + − .

Step 9:	Determine	the	final	value	of	V1, i.e. ( )1 fV t using Eqn. 

(26). ( ) ( )1
1 1

go av
f

av

t T D
V t V

m
−

= +

Step 10:	Determine	the	flight path angle 2γ using Eqn. (42).

Step 11: γ correction (boundary layer) ( )*
2 2 1 hk kγ γγ = γ + − γ ; 

( )
( ) [ ]ker

0 ker

0,1see

see

r r
k

r rγ

−
= ε

−
Step 12: Determine 3σ by comparing the desired and current 

pursuer velocity vector using Eqn. (54).
Step 13: Determine the load factor magnitude 3η using Eqn. (59).
Step 14: Go to step 2 in the next guidance cycle.

Figure 4. Schematic diagram of midcourse SP guidance law (equations for 
f1…..f6 are in eqn. (1)).

Figure 3. coordinate transformation in context of SP guidance 
law.
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3. 6doF ImPlementatIon oF SP GuIdance 
alGorIthm
The pursuer aerodynamic data base consisting of
( )0 ,DC M h and CΝα used for this algorithm is shown in  

Fig. 5 and Fig. 6, respectively. The time history of the pursuer 
thrust and mass data for evaluation of ( ),av avT m  is given in 
Fig. 7. The output of SP guidance is ( )3 3,η σ along the pitch 
and pitch plane. These latax components are in local vertical 
frame. They have to be converted to body frame for generating 
autopilot. Demanded pursuer acceleration in local vertical 
frame transformed to body frame using latax demand.

0
T Tb i

xd yd zd i l y zB l
a a a C C u u

   = η η                      (65)

The pursuer position ( ), ,m m mx y z  and velocity
( ), ,xm ym zmV V V

 
are available from on-board strap-down internal 

navigation system (SDNIS). Its azimuth and elevation angles 
along with DCM, are

cos cos cos sin sin
sin cos 0

sin cos sin sin cos

m m m m m
l
i m m

m m m m m

C u

γ f γ f γ 
 − f f 
 − γ f − γ f γ 

( ) ( )1 1 2 2ˆtan ; tanm ym xm m zm xm xmV V V V V− −f = γ = +       (66)

Calculation of total drag using Eqn. (4) is very important 
for computation of optimal altitude. So, latax achieved by 
the pursuer and sensed by the accelerometer is fed to the SP 
guidance block for accurate induced drag calculation. Let
( ),yf zfη η

 
be the fed back latax components in the local vertical 

frame from the acceleration output after necessary orthogonal 
transformations. The transformation equations are 

xf x
l i

yf i b y

zf yl sensed

a
C C a

a

u

u

   η
   η =   
   η   

  

2 2
2 2 2

0 0 0
1; ; ; ,d

f yf zf i f D i d
N

m g k
D D D D C QS D k

QS C α

η = η + η = + η = = =

(67)
Input to SP algorithm is( ), , , , ,m m m xm ym zmx y z V V V obtained 

from the SDNIS. An EKF based on board radar estimator 
is used to process the noisy range, azimuth and elevation of 
evader to estimate its position and velocity components relative 
to the aircraft. The estimated inertial position and velocity 
components of evader is sent to the pursuer through a data link 
at a certain frequency.  Position and velocity information of 
both pursuer and evader arev input to the SP algorithm which 
generates( ),y zη η

 
as guidance output.

One important practical constraint in midcourse guidance 
is that the pursuer has to be always within the data link beam 
width of 020± with respect to the launch aircraft for receiving 
the evader information (Fig. 2). So at any time instant based on 
data link maximum look angle constraint, launch aircraft and 
pursuer SDNIS information, maxh  (Section 2.6) was computed 
online. Calculation of the 1h based on its constraints maxh  (8) 
has been carried out in the guidance algorithm. Instantaneous 

Figure 5. Pursuer CDO variation with mach number and 
altitude.
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Figure 7.  time history of pursuer thrust and mass.
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position ( , , )a a ax y z and velocity components ( ), ,xa ya zaV V V
of the aircraft are available from aircraft SDINS. At any time 
instant the pursuer LOS with respect to the aircraft can be 
written as 

;m ax x x∆ = −  ;m ay y y∆ = −  ;m ah h h∆ = −

( )1tan ;lma x y−f = ∆ ∆ ( )1 2 2tanlma h x y−γ = ∆ ∆ + ∆
   

(68)

The pursuer LOS as given in Eqn. (68) has to be always 
within max 020lmaγ = ± during midcourseguidance and 

( ) ( )2 2
max tan mxa

m a m a lma ah x x y y z= − + − γ +               (69)
Demanded pursuer optimisation altitude from Eqn. (32) is 

modified	as	 ( )1 max 1min ,h h h= and used in Eqn. (34). 

4.  6doF SImulatIon reSultS
Here we show through simulation that the SP guidance 

law during midcourse gives rise to more closing velocity at the 
end of midcourse which in turn gives more launch range when 
compared to PN guidance. First we will consider a typical 
engagement (Table 1) with a non-manoeuvring evader. For this 
case study PN or SP was used during the midcourse phase and 
PN was used during terminal homing phase. The aerodynamic 
data,	 the	 purser	 mass	 history	 and	 thrust	 profile	 have	 been	
discussed previously. After launch from the launch aircraft, the 
pursuer’s initial elevation and azimuth is kept constant for 2.5 
s using an altitude hold autopilot. Also, at launch, the on-board 
radar estimator of the launch aircraft is initialised to process the 
evader noisy measurements, tracked by on-board radar. After 
attitude hold phase, the midcourse guidance is initiated. During 
this period, the evader position and velocity components 
estimated by the radar EKF, are up-linked to the pursuer 
through data link from the launch aircraft. Once the pursuer-
evader range becomes less than 15 km, the pursuer on-board 
seeker starts tracking the evader. At this time instant. EKF based 
seeker estimator is initialised to estimate the relative position 
and velocity components of evader with respect to pursuer by 
processing the noisy seeker measurements. At 10 km range-
to-go the radar based midcourse guidance ends and PN based 
terminal homing guidance starts. From this time onwards the 
pursuer is in autonomous mode and seeker based estimator 
output is used by the terminal PN guidance for pursuer latax 
generation. During midcourse guidance, radar EKF sampling as 
well as update of position and velocity information of evader to 
pursuer is carried out at every 100 ms using the data link. During 
terminal guidance, seeker EKF processes seeker measurements 
at 10 ms interval. Guidance update during midcourse, as well 
as during the terminal phase, is carried out at 10 ms interval. 

Details of evader model, PN guidance law and terminal seeker 
estimator are given in Srinivasan16, et al. A brief description 
of midcourse radar estimator in launch aircraft is given in 
Appendix A. In 6DOF simulation the guidance law operates 
in the presence of sensor noise, body rate coupling with LOS 
rates of seeker, estimation error, guidance lag, autopilot lag 
and actuator dynamics. Three loop autopilot17 has been used 
in simulation for tracking guidance demanded latax along both 
yaw	and	pitch	plane.	The	control	surface	deflection	demands	
are passed through four independent actuators. The actuators 
have been modelled as a second order system with command 

input/output transfer function  
2

0
2 22

a

i a a as s
δ ω

=
δ + ζ ω + ω

with 

aζ =	0.366,	 aω 	=	20 Hz, maxδ =24	deg.	and	 maxδ =25.	deg/s.	
The actuator nonlinearities consist of dead zone and backlash 
of 0.23 deg and 0.115 deg half-width respectively. Based on 
the simulation results we infer the following:
(a) Using PN guidance during midcourse, maximum launch 

range is 41km with impact Mach 1.1 
(b) Using SP guidance with maximum range of 48 km can be 

achieved for the same initial condition as in PN. During 
midcourse phase maximum LOS with respect to launch 
aircraft is 19 deg which is within data link limit. In this 
case interception Mach number is 1.2.

(c) Pursuer velocity and Mach number corresponding to PN 
guided trajectory (41 km launch range) and SP guided 
trajectory (48 km launch range) are shown in Fig. 8. 
Time variation of pursuer LOS with respect to aircraft
( ),lma lmaf γ  along yaw and pitch plane are shown in  
Fig.  9. Complete engagement trajectory for all the above 
cases is shown in Fig. 10.

(d) The demanded and achieved t achieved accelerations in 
pitch and yaw planes along the body frame corresponding 
to SP during midcourse and PN during terminal homing 
are	shown	in	Fig.	11.	From	the	figure	we	see	that	initially	
pursuer experiences high latax to reach the optimal 
altitude which is the main reason for pitch up.
A complete 6 DOF Monte Carlo simulation of the given 

engagement condition (case study of Table 1) has been carried 
out to study robustness of the present SP guidance law in the 
presence of uncertainty in the initial kinematic conditions aero 
data	thrust	wing/fin	misalignment	angles,	centre	of	gravity	(CG),	
mass moment of inertia (MMI) of pursuer and random noise 
sequence in airborne radar and pursuer seeker measurements. 
Variation on different parameters for MC simulation is given in 
Table 2 which are based on experiments and wind tunnel tests 
and other subsystem consideration. MC engagement result 
corresponding to both (PN+PN) and (SP+PN) as (midcourse 
+ terminal) guidance law for 41 km and 48 km lock on range 
is given in Table 3. The results are based on 100 runs. From 
the results we can infer that for a given engagement condition, 
subjected to data link hardware constraint it is possible to 
increase the launch range by 17 per cent through SP midcourse 
guidance law over PN for supersonic interception. Supersonic 
interception is preferred for overall system effectiveness and 
lethality point of view. Cumulative distribution frequency 
(CDF) comparison of miss distance corresponding to PN and 
SP midcourse guidance law is shown in Fig. 12.

table 1. typical engagement scenario for SP midcourse guidance 
(non manoeuvring evader)

head-on engagement, Seeker lock-on range = 10 km
Parameter Pursuer evader

Initial velocity 380	m/s	(M	=	1.2) 228	m/s	(M	=	0.7)
Initial elevation angle 0 deg. 0 deg.
Initial azimuth angle 0 deg. 180 deg.

Initial altitude 8 km 6 km
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We next obtain the outer launch boundary for engagement 
at 10 km altitude corresponding to anon-manoeuvring evader. 
The inputs for launch boundary generation are seeker lock on-
range	=	10	km,	pursuer	and	evader	initial	velocity	=	370	m/s	
(M	=	1.2),	their	initial	elevation	=	0	deg,	pursuer	initial	azimuth	
=	0	deg.	and	evader	initial	azimuth ε  (0, 180) deg. With these 
initial conditions, the normalised outer launch envelope using 
PN and SP as midcourse guidance is shown in Fig.13. With the 
present data link constraint it is possible to extend range by 
about 15 km for engagements at 10 km altitude. 

5. concluSIonS
In this study SP guidance algorithm originally developed 

by Sridhar3, et al. and Cheng5, et al. has been derived and 
thoroughly analysed. The guidance law has been implemented 

Figure 11. demanded and achieved latex ( ,y pη η ) of pursuer 
in body frame (SP during midcourse, Pn during 
terminal phase). 

Figure 10.  engagement trajectory of pursuer and evader. 
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Figure 13. comparison of normalised launch boundary with  
SP and Pn as midcourse guidance law (10 km 
altitude).

Parameters distribution type* Factor** Parameters distribution type* Factor**

ti(s) UD (0.2, 0.3) AFZ Thrust (s) UD (6.7, 7.3) AFN
ui(m/s) UD (370, 390) AFZ Pitch misalignment  (°) ND (0, 0.2) AFN
ui(m/s) UD (-2, 2) AFZ yaw misalignment  (°) ND (0, 0.2) AFN
wi(m/s)u UD (-5, 5) AFZ Wing misalignment (°) ND (0, 0.2) AFN
pi(°/s) UD (-2, 2) AFZ Fin misalignment (°) ND (0, 0.2) AFN
qi(°/s) UD (-2, 2) AFZ Ixx (kg m2) UD (-0.1, 0.1) AFN
ri(°/s) UD (-2, 2) AFZ Iyy ( kg m2) UD (-1.0, 1.0) AFN
y(°) UD (-2, 2) AFZ Izz (kg m2) UD (-1.0, 1.0) AFN
q(°) UD (-10, -2) AFZ Cx ND (0, 0.15) AFN
f(°) UD (-2, 2) AFZ CN ND (0, 0.15) AFN
mass (kg) UD (-3, 3) AFZ CM ND (0, 0.15) AFN
x-cg (mm) UD (-3, 3) AFZ Cl ND (0, 0.15) AFN
y-cg (mm) UD (-2, 2) AFZ

nCδ ND (0, 0.15) AFN

z-cg (mm) UD (-2, 2) AFZ
mCδ ND (0, 0.15) AFN

h (km) UD (-0.5, 0.5) AFZ
*ND=Normal	Distribution	with ( ),3µ σ ,	UD=Uniform	distribution	with	(lower,	upper)	bound	
**AFN=Additive	factor	over	nominal	value,	AFZ=Additive	factor	over	zero

midcourse end* terminal impact
(mid + term) guidance time (s) altitude (km) mach time (s) mimpact estimated miss (m) true miss (m)

PN + PN (28.4 + 0.74) (6.6 ± 0.05) (1.86 +  0.15) (42.1 +  1.6) (1.22 + 0.15) (5.1 ±  2.5) (5.6 ± 2.4)

SP + SP (36.6 + 1.03) (8.87 ± 0.07) (1.90 +  0.14) (50.02 + 1.8) (1.40+ 0.14) (5.2 ± 2.2) (5.6 ± 2.6)
*The MC results are normally distribution with 

table 3.  mc based 6 doF simulation results of engagement of table 1

table 2.  Perturbation of different parameters in 6 doF simulation for mc Study of table1

in realistic 6 DOF simulations model of an air-to-air 
engagement in the presence of sensor noise, autopilot lag and 
actuator nonlinearities. The paper has proposed an improved 
SP based algorithm from the point of view of practical on 
board implementation. Based on the Monte Carlo based 6 DOF 
simulation studies it is inferred that SP guidance is a viable 
alternate to PN guidance for midcourse application within 
the constraint of maximum look angle of the launch aircraft. 
Guidance gain tuning may be explored for better robustness of 
SP guidance algorithm10, 18 as avenues for further research over 
the present work. 
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a. eKF based aircraft radar estimator during 
midcourse Phase
Launch aircraft radar measures evader position relative to 

itself ( ), ,t t tx y z∆ ∆ ∆  in the polar form as 

2 2 2 ;t t t tr x y z∆ = ∆ + ∆ + ∆ 1tan t
t
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x
− ∆

∆ =
∆
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e
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∆ =
∆ + ∆

                                             

 (70)
These measurements are contaminated by a zero mean 

Gaussian noise given by ,r αη η  and eη as 
;m t rr r∆ = ∆ + η ;m ta a α∆ = ∆ + η ;m t ee e∆ = ∆ + η        (71)

Realistic radar measurements noise covariance pR for 
( ), ,m m mr a e∆ ∆ ∆  as ( )2 2 2 2 210000 ,4 10 deg ,4 10 degm −× ×  
have been taken. The converted measurements in Cartesian 

Coordinateare 

cos cos ;tm m m mx r e a∆ = ∆ ∆ ∆  cos sin ;tm m m my r e a∆ = ∆ ∆ ∆
sintm m mz r a∆ = ∆ ∆                                                        (72)

EKF based radar estimator16 has been used to estimate 
position and velocity components of evader relative to aircraft
( )ˆ ˆ ˆˆ ˆ ˆ, , , , ,t t t xt ÿt ztx y z V V V∆ ∆ ∆ ∆ ∆ ∆

 
based on the measurements 

given in (72). Evader position and velocity components in the 
inertial frame are obtained by algebraically adding aircraft 
position and velocity components available from its SDNIS 
and transmitted to pursuer through data link as follows:

ˆ ˆ ;t a tx x x= + ∆ ˆ ˆ ;t a ty y y= + ∆ ˆ ˆt a tz z z= + ∆                    
(73)

ˆ ˆ ;xt xa xtV V V= + ∆ ˆ ˆ ;ÿt ya ÿtV V V= + ∆ ˆ ˆ
zt za ztV V V= + ∆  
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