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1.  IntroductIon
Space-borne infrared missile early-warning system is an 

important component of missile defense systems. By detecting 
the azimuth and elevation angles of a missile, the early-warning 
system can provide a real-time report of each occurrence of a 
missile launch, and estimate launch parameters and trajectory1. 
The estimation of boost-phase trajectory from space-borne 
line-of-sight (LOS) measurements. Due to the lack of distance 
information between a missile and observational satellites, the 
first problem that needs to be settled is the poor-observability2,3. 
There are two solutions to this problem: one is to increase 
the number of satellites; the other is to incorporate a priori 
information into estimation. We focus on the later approach 
in this paper.

A priori information in trajectory estimation can be 
divided into two levels: a priori information about trajectory 
model and parameters. Generally, a priori information about 
model is expressed by a parameterless model with high 
accuracy. A typical parameterless model is the profile-based 
model4,5,11, which assumes that one can build a profile database 
before launch6. Since a profile-based model only contains 
four launch parameters, it has conquered the problem of poor-
observability effectively. However, an accurate profile of an 
incoming missile is hard to obtain. Hence, the ‘full knowledge’ 
profile has to be improved to increase its adaptability. The 
pseudo-measurement approach, which takes constraints on 
trajectory as measurements, can also be treated as a priori 
information about trajectory model. For example, equality-
constraints are considered as pseudo-measurements in state 

estimation in7. In8, the constraints of altitude and speed at the 
first measurement epoch of a ballistic target are considered as 
pseudo-measurements.

A priori information about parameters refers to prior 
distribution of model parameters. To include this kind of 
information, one can employ the so-called Bayesian paradigm. 
It has been pointed out by9 that the Bayesian paradigm has 
no difficulty in treating non-identifiable parameters. But one 
might be misled by a wrong prior distribution, especially in 
poor-observability scenarios like the current situation. 

Recently Tharmarasa10, et al. proposes a profile-free 
launch point estimator using smoothing followed by backward 
prediction. They focus on using less a priori information as 
far as possible, which makes their method work well only in 
a multi-sensor scenario. Kim11 et al. proposes a launch point 
estimator based-on k-NN search. Their method is a profile-
based method too, but with a different kind of profile.

An estimator for trajectory estimation from space-borne 
LOS measurements following the Bayesian paradigm were 
proposed in the paper. 
(i) A new kind of boost-phase trajectory profile, which is 

more adaptable than other existing profiles;
(ii)  A profile-based maximum penalised likelihood estimator 

(PMPLE), which can incorporate different kinds of 
information into trajectory estimation;

(iii) A 1L  and log-barrier penalty, which can handle box 
constraints efficiently.

2. trajectory estImatIon usIng Los 
measurements
The motion equation of a ballistic target in earth-centered 

earth-fixed (ECEF) can be described by5
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3 2 ( )N
dv ra v r
dt r

= − m − ω× − ω× ω×                           (1)

where r and v are position and velocity of the target, ω  and 
m  are the rotational angular velocity and the gravitational 
constant of the earth, Na is the net acceleration5, combined by 
thrust acceleration, drag acceleration and control acceleration.

Let ( , )Na tα  be a model of the net acceleration, where
α  stands for parameters. And 0 0 0 0 0[ , , , ]Tl t B= λ α be launch 
parameters, where t0 is the launch time, 0λ  the launch 
longitude, 0B  the launch latitude and 0α  the launch heading. 
The state of the target ( ) [ ( ), ( ), ( ), ( ), ( ), ( )]Tx y zx t x t y t z t v t v t v t=  
can be computed by numerical integration, denoted by

0 0 0( ) ( , , ), [ , ]x t f l t    t t t T= α ∀ ∈ +                                 (2)

where T is the target’s boost-phase duration. In the rest of this 
paper, we denote 0[ , ]T T Tlα  by β  for simplicity.

The measurement equation at epoch ( 1,2, , )it i n= 

 is
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2
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 − + −       

(3)
where [ ( ), ( ), ( )]Ti i ix t y t z t  and [ ( ), ( ), ( )]Ts i s i s ix t y t z t  are 
locations of the target and sensor respectively. 1( )itε and

2 ( )itε  are measurement noises, modelled as zero-mean, white, 
Gaussian sequences with known covariance matrix ( )iR t .

By substituting Eqn. (2) into Eqn. (3), the problem 
of boost-phase trajectory estimation turns into a nonlinear 
regression problem.
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Given a set of measurements { }( ), 1, 2, ,n iZ z t i n= = 
, 

the likelihood of β  can be written as
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(6)

be the normalised measurement residuals. The maximum 
likelihood (ML) estimator of β  is

{ }2arg min ( )MLβ = υ β                                                (7)

Poor-observability means the condition number of the 
normal matrix of problem Eqn. (7), 

( ) ( )
( ) ( )

true

T

β

 ∂ υ β ∂υ β
 

∂ β ∂ β  
                                                       (8)

is very large.

3. a PrIorI InformatIon for 
trajectory estImatIon
A priori information considered in this paper includes the 

net acceleration profile (NAP) and constraints of trajectory. 

3.1 Net Acceleration Profile
There are two kinds of profiles in literature1,4,11,13,14.  

first is the nominal profile, which consists of the horizontal 
distance and altitude wrt the launch point as functions of 
time since launch. The other is the thrust acceleration profile, 
which consists of the magnitude and orientation of the thrust 
acceleration. Both of them are ‘full knowledge’ of a missile’s 
boost-phase motion model. Since a missile’s trajectory is 
related to some uncontrollable environmental factors like 
atmosphere, weather and so on, the ‘full knowledge’ is not 
always reliable and useful. What is more, the orientation of net 
acceleration depends on specific missions. A ‘full knowledge’ 
might cause extra troubles when one wants to recognize an 
incoming missile’s type by its motion feature. To overcome 
those shortcomings, we only consider the magnitude of net 
acceleration in the NAP, modelling it under a given precision. 
For the orientation of the net acceleration, we model it by a 
parsimonious model in the later section.

Definition : For a given type of missile with boost-phase 
duration T , let ( ), [0, ]a t t T∈  be the true magnitude of the net 
acceleration, δ  and w be positive numbers. ( , )a tα is a non-
negative function defined on [0, ]TΩ× , where Ω  is a subset 
of d


. If

0
min ( ) ( , )

T
a t a t dt

α∈Ω
− α = δ∫                                            (9)

0 0
max ( , ) min ( , )

T T
a t dt a t dt w

α∈Ωα∈Ω
α − α =∫ ∫                       (10)

then{ }( , ) : ( , ) [0, ]a t t Tα α ∈ Ω× is called a d dimensional NAP 
of the given type of missile, with bias δ  and width w.

 Note that δ  describes the level of similarity between 
( , )a tα and ( )a t , and can’t be calculated since ( )a t  is unknown.

w , which is determined by Ω , describes the variation range 
of the corresponding velocity. We require Ω to be a rectangle 

1 1[ , ] [ , ]d dl u l u× ×  for simplicity. d and the nonlinearity of 
( , )a tα represent the complexity of the NAP.

The basic idea of the NAP is to introduce some parameters 
to improve adaptability, and controlling its freedom by the 

Time epoch Lower bound (m/s2) Upper bound (m/s2)

1τ 1l 1u

  

dτ dl du

Table 1.  NAP consisted by discrete data ( 10 ,d T≤ τ < < τ ≤

 
, 1, , .i il u i d< ∀ =  )
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range of values of parameters. Based on this idea, we introduce 
a NAP constructed from discrete data, as shown in Table 1. 
Parameters 1[ ( ), , ( )]Tda aα = τ τ  are the true magnitude 
of net acceleration, with range of values 1 1[ , ] [ , ]d dl u l u× × . 
Given α , ( )a t  is calculated by Algorithm 1. Note that the 
width of a NAP constructed by discrete data is determined by 
the range of each discrete data and sampling frequency, and is 
easy to calculate.

Algorithm 1 : Hyperbolic interpolation for ( )a t , where

( ) ( )
1

1 1 1

( ) ( )
( , 1, )

( ) ( ) ( )
i i

i i i i i i

a a
f i i t

a a a t
+

+ + +

τ τ
+ =

τ − τ − τ − τ τ − τ  
 

             (11)
  if { 1d = } return 1( )a τ .
  else { 2t < τ }
  if { 1 2( ) ( )a aτ ≤ τ } return (1,2, )f t ;
  else { 1 20.5( )t < τ + τ }return 1( )a τ ;
  else{ 2d =  or 2 3( ) ( )a aτ > τ } return 2( )a τ ;
    elsereturn (2,3, )f t ;
    end if.
   else{ 1dt −≥ τ }
    if { 1( ) ( )d da a−τ ≤ τ } return ( 1, , )f d d t− ;
  else { 10.5( )d dt −≥ τ + τ } return ( )da τ ;
  else{ 2 1( ) ( )d da a− −τ ≤ τ } return ( 2, 1, )f d d t− − ;
   elsereturn 1( )da −τ ;
    end if.
   else { 1i it +τ ≤ < τ }
    if { 1( ) ( )i ia a +τ ≤ τ } return ( , 1, )f i i t+ ;
  else { 10.5( )i it +≤ τ + τ and 1( ) ( )i ia a−τ ≤ τ } return

( 1, , )f i i t− ;
  else{ 10.5( )i it +≤ τ + τ and 1( ) ( )i ia a−τ > τ } return ( )ia τ ;
  else{ 10.5( )i it +> τ + τ and 1 2( ) ( )i ia a+ +τ ≤ τ } return

( 1, 2, )f i i t+ + ;
  else{ 10.5( )i it +> τ + τ and 1 2( ) ( )i ia a+ +τ > τ } return

1( )ia +τ ;
   end if.
   end if.

3.2 Constraints of Trajectory
In many circumstances, LOS measurements are not the 

only available information. One could get information like 
range of values of the missile’s range, magnitude of the burn-
out velocity and burn-out altitude of a missile before launch. 
According to the performance of sensors, one can also get the 
range of values of the target’s altitude at the first measurement 
epoch. All such information should be considered in the 
estimation. We employ pseudo-measurements to describe this 
type of information. For example, if ẑ ∈ Θ , we treat ẑ  as a 
measurement (i.e. a random variable) and describe it by a 
distribution with support Θ . 

4. PrOfiLE-bASEd MAxiMUM PENALiSEd 
LIkeLIhood estImatIon

4.1 formulation of the Estimator
Suppose:

(a) The NAP of the incoming missile is

{ }( , ) : ( , ) [0, ]a t t Tα α ∈ Ω× , and the prior distribution of 

0[ , ]T T Tlβ = α  is 
( ) ( )ii

π β = π β∏ ;

(b) There are q mutually independent pseudo-measurements

1ˆ ˆ ˆ[ , , ]Tq qz zz  
with conditional distribution

1
ˆ ˆ( | ) ( | )

q
q ii

p z p z
=

β = β∏ ;

(c) LOS measurements nZ  and pseudo-measurements ˆqz are 
independent for a given β , and the conditional distribution 
of nZ  is ( | )np Z β  defined by Eqn. (5).
under those assumptions, the posterior of β  according to 

the Bayesian theorem9 is
ˆ ˆ( | , ) ( | ) ( | ) ( )n q n qp Z z p Z p zβ ≅ β β π β                           (12)

where the notation ≅  means ‘equal up to a constant’. Hence, 
the maximum a posterior estimate of β is

{ }
2

ˆarg max ( | ) ( | ) ( )

1 ˆarg min ( ) log[ ( | )] log[ ( )] ,
2

MPL n q

q

p Z p z

       p z

β = β β π β

 = υ β − β − π β 
 

      

(13)
Which is a penalised least square estimator with penalty 
term ˆlog[ ( | )] log[ ( )]qp z− β − π β . Hence MPLβ  is named by 
PMPLE.

To solve Eqn.  (13), rewrite it as,

221 1 ˆarg min ( ) ( )
2 2MPL

 β = υ β + υ β 
 

                      (14)

where ˆ ˆ( ) 2 log[ ( | )] 2 log[ ( )]
T

qp z υ β = − β − π β  . Thus any 

nonlinear least square algorithm is applicable. We recommend 
the LM algorithm provided by15. Note that ˆ2 log[ ( | )]qp z β  
and 2 log[ ( )]π β  are not required to be negative, since in the 
LM algorithm we do not need to calculate the square roots of 

ˆ2 log[ ( | )]qp z− β and 2log[ ( )]− π β .
The normal matrix of Eqn. (14) is

ˆ ˆ( ) ( ) ( ) ( )T T
G ∂ υ β ∂υ β ∂ υ β ∂υ β

= +
∂β ∂β ∂β ∂β

                            (15)

Comparing Eqn. (15) with Eqn. (8), one can find out that 
a priori information improves observability by adding a non-
negative definite matrix to the normal matrix.

4.2 1L  and Log-barrier Mixed Penalty
Without loss of generality, we only consider penalty terms 

derived from one dimensional distribution. Since it’s easy to 
get prior intervals for all parameters and pseudo-measurements, 
the beta distribution with support [ , ]l u

1 1

1
1 2

( ) ( ) , [ , ]
( | , , , ) ( , )( )

0, [ , ]

a b

a b
x l u x   x l u

Beta x l u B a b u l
                              x l u

− −

+ −

 − −
∈δ δ = −

 ∉   

(16)

is a good choice, where ( , )B a b  is the beta function, 1 (0,1)δ ∈ , 
2 (0,1]δ ∈  and
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1 1
1

2 1 1

1 1
1

2 1 1

1 min{1 , }
1 ,

min{1 , }

1 min{1 , }
(1 ) 1 .

min{1 , }

a

b

  + − δ δ
= δ −  δ − δ δ  


 + − δ δ = − δ −  δ − δ δ 

                           (17)

when 1 0.5δ = and 2 1δ = , Eqn. (16) degenerates to the uniform 
distribution on [ , ]l u . 

The corresponding penalty function is

[ ]1 2
( 1) log( ) ( 1) log( ), ( , )

log ( | , , , )
, ( , )

a x l b u x x l u
Beta x l u

x l u
− − − − − − ∈

− δ δ ≅  +∞ ∉

(18)
Equation (18) coincides with the well-known log-barrier 

penalty in box constrained optimisation problem. unlike the 
barrier method, the penalty factors 1a −  and 1b − do not need to 
be updated in each iterator, since they have a specific meaning 
of a priori assumption. 

Equation (18) shows that we have to find initial 
feasible points 0 ( , )x l u∈ for both parameters and pseudo-
measurements, which is difficult in the current situation since 
pseudo-measurement is generally a nonlinear function of 
parameters. To overcome this problem, we construct a mixed 
distribution with support 



{ }

{ }

11
1 1

1 2 1 2

2

1

2

exp ( ) ,

( ) ( ) ,( ; , ,
( , )( )
exp (

, )

)

,

,

a b
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C x

x l u xC x
B a b u l

x x

Mix x l u x x

C x xx

− −

+ −

 <

δ δ λ =

λ λ − α

− −
≤ ≤

−
λ λ α



>−




     

(19)

where a  and b  are determined by Eqn. (17). λ is a fairly large 
number. 1 2 1, ,x x α and 2α are determined by the continuity 
of the probability density as well as its derivative. C is a 
normalisation factor, making 1 2( ; , , , , )Mix x l u δ δ λ  a proper 
probability density function.

The corresponding penalty term is

[ ]
1

1 2 1 2

2

1

2

lo
( ),

( 1)( ) ( 1)( ),
log (

g ( ; , , , ,
)

)
,

x
a x

x x
Mix x l u x xb

x x
l u x x

x

<−λ − α
− − − − − − ≤ ≤

− λ α −


− δ δ λ ≅ 
 >

     

(20)
which is a 1L  and log-barrier mixed penalty function.

Figure 1 is a schematic plot of the 2L  penalty, log-barrier 
penalty and mixed penalty. It shows that the mixed penalty is 
the most appropriate penalty for a nonlinear box constraint. 
Note that both the log-barrier penalty and the mixed penalty 
are convex for all 1 (0,1)δ ∈ , 2 (0,1]δ ∈  and 0λ > .

4.3 Covariance Estimation
Let ( )η β be the parameters we are interested in. The 

Cramer-Rao Lower Bound (CRLB)16 of ( )η β is

1 () )) )( ((

true

T
C M −

β

∂ ∂ η β
 
 

η β
η = β

∂β β ∂
                            (21)

where ( )M β  is the Fisher information matrix of β . under the 
assumption of independence, ( )M β can be decomposed as16

ˆ
1

( ) ( ) ( ) ( )
n i

q

Z z
i

M M M Mβ
=

β = β + β + β∑                        (22)

where ( )
nZM β , ˆ ( )

izM β and ( )Mβ β are the information provided 
by LOS measurements, pseudo-measurement and a priori 
information of parameters, respectively. By substituting trueβ
with MPLβ , the covariance of MPLη can be estimated by 4,8.

1( ) ( )( ) ( )
MPL

T

MPLV M −

β

 ∂ η β ∂η β
η = β 

∂β ∂β  
                     (23)

To evaluate a pseudo-measurement, we can use Eqns. (15) 
and (22). Equation (15) is used for evaluating the improvement 
of observability, while Eqn. (22) is used for evaluating the 
improvement of accuracy. 

5. sImuLatIon resuLts
In this section we consider some typical scenarios to 

investigate the performance of the PMPLE. All the results are 
based on 50 Monte-Carlo runs. 

In a single-sensor scenario, the passive sensor is carried 
by a GEO satellite located at latitude 140° E. In a double-
sensor scenario, passive sensors are carried by two GEO 
satellites located at 100° E and 180° E, respectively. The LOS 
error and sampling frequency are set to be 30 mrad and 0.4 Hz. 
We suppose that the target can be observed when the altitude 
is larger than 1 km.

At the reference time t0 = 0 s, the target is launched at 20° 
N latitude, 140° E longitude, with launch heading (wrt true 
north) 300°. The true magnitude and orientation of the thrust 
acceleration of the target is shown in Fig. 2. The NAP is given 
by discrete data in each simulation as

( ), ( ) ( ), ( ) ( )
10.3 , 1,2, ,10

i i i i i

i

a a
i         i

 τ τ − ε τ τ − ε τ + δ


τ = = 

                            (24)

where ( )ia τ  is the magnitude of the true net acceleration, 
( )iε τ  is a uniformly distributed random variable defined on 

[0, ]δ . δ determines the width of the profile and is set to be 5.0 
m/s2. For the orientation of the net acceleration, we set that the 
trajectory lies in a plane, and model the angle ( )tϕ  between 
the net thrust and the outward normal vector from the center 

figure 1.  A schematic plot of the three kinds of penalties.
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of the ECEF by, 

1
2

2
0 1 22

2 1

0 2

0, ;

( )
( ) 1 , ;

( )
, .

t

tt t

t

≤ ς


 ς −ϕ = ϕ − ς < ≤ ς 
ς − τ   

ϕ > ς

                       (25)

1ς , 2ς and 0ϕ  are parameters, with prior intervals (0,10), 
(30,100) and ( / 6,5 /12)π π , respectively. Prior distributions 
of all parameters are ( , , ,0.5,0.9, 20)Mix x l u .

Pseudo-measurements considered in the simulation 
includes the range ( )R β of the target, the altitude of the targets 
at the first measurement epoch 1( )h t  and last measurement 
epoch ( )nh t , and the magnitude of the velocity of the target at 
the last measurement epoch ( )nv t .

Interested parameters include the launch position 
0 0 0( , , )x y z , launch heading 0α , target position ( )nr t  and 

the velocity ( )nv t  of the last measurement epoch. The square 
root of the trace of the CRLB and covariance matrix, and the 
normalised estimation error squared (NEES)16.

( ) ( )ˆ ˆ ˆ( ) ( )T
true true trueeff Mη η − η η η − η

                    (26)
are used to evaluate the performance of the PMPLE. Note 
that if η̂  is an unbiased and asymptotically normal distributed 
estimator, ˆ( )eff η  is a chi-squared distributed random variable 
with degrees of freedom ˆdim( )η , where ˆdim( )η  is the 
dimension of η̂ .

5.1 results of some Typical Scenarios
In this section, we consider the following four typical 

scenarios to demonstrate the efficiency of the PMPLE
SS0: single-sensor without pseudo-measurements;
SS1: single-sensor with four pseudo-measurements;
DS0: double-sensor without pseudo-measurements;
DS1: double-sensor with four pseudo-measurements.

Distributions of all pseudo-measurements are set to be 
0 0( | 0.9 ,1.1 ,0.5,0.9,20)Mix x x x , where 0x is the true value of 

the corresponding pseudo-measurement.
Table 2 shows the RMSE of interested parameters. The 

improvement caused by pseudo-measurements in single-

Table 2.  RMSE of interested parameters

Launch point(m) 0α (°) r(tn)(m) v(tn)(m/s)

SS0 234.83 0.2411 3081.33 70.41

SS1 223.55 0.0745 947.26 28.19

DS0 222.26 0.0632 358.01 19.26

DS1 221.24 0.0575 349.62 17.56

Table 3.  NEES of interested parameters

eff (r(tn)) eff (c(tn)) 
SS0 2.41 2.06
SS1 2.42 2.00
DS0 3.70 3.38
DS1 2.73 3.24

sensor scenarios is more significant than that in double-sensor 
scenarios. Table 3 shows that the PMPLE is efficient in all 
the four scenarios. We only present the NEES of ( )nr t and 

( )nv t , since ( )nr t  and ( )nv t  are functions of β , ( )nr t  and 
( )nv t  are efficient only if estimate of β  is efficient. Note that 
2
150 (0.025) 50 2.36χ ≈ and 2

150 (0.975) 50 3.72χ ≈ .

figure 2.  Magnitude and orientation of thrust acceleration of the target during boost-phase.
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5.2 The Performance of Pseudo-Measurements

Table 4 and Table 5 show the CRLB of interested 
parameters in the double-sensor and single-sensor scenarios 
respectively, where prior distribution of pseudo-measurement 
is set to 0 0( | 0.95 ,1.05 ,0.5,0.5,20)Mix x x x . The results indicate 
that the pseudo-measurements play a more important role in 
the single-sensor scenario, and the effect of using multiple 
pseudo-measurements simultaneously does not equal the sum 
of the effect of a single pseudo-measurement.

5.3 Sensitivity with respect to a Priori information
In order to study the sensitivity wrt profile width, we 

consider the four scenarios SS0, SS1, DS0 and DS1 defined 
in section 5.1. The profile width is controlled by changing 
δ   from 0.2 to 10. Distributions of pseudo-measurements are 

0 0( | 0.9 ,1.1 ,0.5,0.9,20)Mix x x x .
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Figure 3 shows that a NAP of larger width will end up 
with a larger CRLB and covariance. It once again reveals the 
fact that pseudo-measurements play more important roles in a 
single-sensor scenario than in a double-sensor scenario.

We take ( )R β and the estimated result of the launch heading 
as an example to study the influence of prior distribution 
of pseudo-measurements. We consider the following four 
scenarios:
SRM: single-sensor with 0 0( ) ~ ( | 0.7 ,1.3 , , 20),R Mix R R Rβ r τ ;
DRM: double-sensor with 0 0( ) ~ ( | 0.7 1.3 , , , 20),R Mix R R Rβ r τ ;
SRB: single-sensor with 0 0( ) ~ ( | , ( 0.4) , 0.2, , 20)R Mix R x xβ r r + r + τ ;
DRB: double-sensor with 0 0( ) ~ ( | , ( 0.4) , 0.2, , 20)R Mix x x xβ r r + r + τ .
τ is set to be 0.1, 0.5 and 0.9 in each scenario. SRM and DRM 
are designed for learning the influence of the prior mean, while 
SRB and DRB for the influence of the prior bound.

Figures 4 and 5 are results of scenarios SRM and DRM. 
These figures demonstrate that in a single-sensor scenario, bias 
in the prior mean of the range will lead to bias in the estimate 
result, however, when 0.5τ > , the bias becomes smaller. 
In addition, under a double-sensor scenario, the enhanced 
observability eliminates the bias effectively.

Figures 6 and 7 are results for scenarios SRB and DRB. 
They once again demonstrate that a bigger τ  is more robust 
than a smaller τ , and double-sensor scenarios are insensitive 

figure 3. Influence of the width of the NAP (C stands for the CRLB, and V stands for the estimate variance).
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figure 4. Influence of the mean of the range in the single-sensor scenario.
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Table 4.  CRLB of the double-sensor scenario

Pseudo-
measurements
considered

Launch 
point (m) 0α (°) r(tn)(m) v(tn)(m/s)

Non 221.16 0.1989 379.0419 19.5992
( )R β 221.16 0.1988 377.5592 19.5761

 h(t1) 221.16 0.1989 378.3838 19.5768
 h(tn) 221.16 0.1989 375.5988 19.4680
 v(tn) 221.16 0.1989 373.2790 18.7329

( )R β , h(t1), h(tn)
and v(tn)

221.16 0.1987 368.2142 18.5837

Table 5.  CRLB of the single-sensor scenario

Pseudo-
measurements
considered

Launch 
point (m)

0α (°) r(tn)(m) v(tn)(m/s)

Non 233.39 0.3065 1784.1102 42.0809
( )R β 222.28 0.2727 1397.6862 35.8447

 h(t1) 221.16 0.2873 1396.8637 37.6205
 h(tn) 222.28 0.2397 956.3819 28.4291
 v(tn) 222.28 0.2928 1597.2533 37.6601

( )R β , h(t1), 
h(tn)and v(tn)

221.16 0.2355 831.6401 26.4374
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figure 6. Influence of the bound of the range in the single-sensor scenario.

figure 7. Influence of the bound of the range in the double-sensor scenario.
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figure 5. Influence of the mean of the range in the double-sensor scenario.
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to prior information. They also suggest that if a pseudo-
measurement [ , ]z l u∈ , then ( ; , ,0.5, , 20)Mix z l u τ  is a robust 
prior probability density function when 0.5 1< τ < .

6. CONCLUSiON
We have presented a novel profile-based maximum 

penalised likelihood estimator for trajectory estimation. 
The estimator handles the problem of poor-observability by 
introducing a priori information including net acceleration 
profile, constraints of trajectory and prior intervals of 
parameters. In order to test the performance of the estimator, 
we have conducted a series of simulations. The results indicate 
that:
(i) The estimator is efficient in both single-sensor and double-

sensor scenarios;
(ii) By introducing a priori information, the accuracy of 

interested parameters (especially ( )nr t and ( )nv t ) 
has been improved dramatically in the single-sensor 
scenario. While in a double-sensor scenario, the enhanced 
observablility makes a priori information less important.

(iii) In the double-sensor scenario, the PMPLE is robust wrt 
1, ,l u δ  and 2δ  of the prior distribution 1 2( ; , , , , )Mix z l u δ δ λ . 

And in the single-sensor scenario, the PMPLE is robust 
wrt l, u and 1δ  by setting 2 (0.5,1)δ ∈ . 
We hold that the PMPLE is highly useful in space-borne 

missile defense system for its adaptability. 
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