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1. IntroductIon
Methods to classify encryption algorithms have enormous 

applications. Fisher’s Discriminant Analysis (FDA) has been 
used in the areas of image processing and pattern recognition6, 
machine intelligence2and in the classification of speech/
music1. However, we have not found the application of FDA 
in classifying cipher texts, although the Hidden Markov Model 
has been used in a similar context by Ray7, et al. and other 
pattern recognition techniques has been used by Sharif9, et al. 
We consider the application of FDA to classify cipher texts; 
the method is applied for detecting the algorithm used for the 
encryption of some meaningful plain text. It is essential for 
a cryptanalyst to predict the encryption method so that the 
appropriate attack may be chosen. Here we aim to predict the 
algorithm used to construct a particular ciphertext. The results 
indicate that the FDA method has reasonable classification 
properties.

2.  the BasIc dataBase
We have created a database of 200 files each of sizes 

1 kb, 2 kb, 5 kb, and 10 kb. All the source (plaintext) files 
represent meaningful English texts. Given a plaintext file, we 
convert each character of the plaintext file to the corresponding 
ASCII value, which is represented in binary format through 
an appropriate coding scheme. This produces the binary (as 

opposed to English) plaintext file, the input of the encryption 
algorithms. We have used ten algorithms for encryption, five 
each of the stream cipher and block cipher types. Encryption 
algorithms are briefly described.

3.  cIpher algorIthms
Symmetric cryptosystems are divided into two types: 

stream cipher and block cipher. In stream ciphers, plaintexts 
are combined with a pseudorandom cipher bit stream (key 
stream) by an exclusive-or (XOR) operation. Each bit xi 
is encrypted by adding a secret key secret bit si(modulo 2). 
Block ciphers involve an enciphering transformation on each 
“message block” independently. A block cipher breaks the 
plaintext P = (p1, p2,….,pn) into several message blocks with 
the same length and transforms it to the cipher text  C = (c1, 
c2,…, cn) via an encryption function controlled by a secret key 
K. The first four of our five stream ciphers are based on the 
linear feedback shift register (LFSR) which is a mechanism for 
generating a sequence of binary bits. At each clocking instant, 
the contents are shifted right by one position, and the XOR 
of a subset of the cell contents is placed in the left most cell. 
Let the binary numbers s0, s1,s2...sk-1 represent the initial state 
of the register, and suppose that we have a fixed sequence of 
binary evolutions a0,  a1,  a2,…, ak-1. Registers are composed of 
bits numbered from right to left, i.e., s0 is the right most bit of 
the block. At each step the contents of the cells of the register 
are shifted right by one position, and the right most bit of the 
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2) is placed in the leftmost cell. For our first cipher (stream1) 

we have used an LFSR with register length 64, but the output 
keystream has been generated by a nonlinear filter generator 
function g based on the register sequence {si}. Given the 
sequence {s63, s62,…,s0}, the output at the current stage will be 
a nonlinear function of the {si}’s, rather than the output stream 
of the LFSR. We have chosen the sequence {ai} according to 
the coefficients of a 64 degree primitive polynomial on GF(2), 
the Galois field of two elements; the  coefficients are either 
0 or 1.For stream cipher 2(stream2) the method is the same 
as the previous one; the only difference is that the possible 
values in the register {si} and the evolution {ai} are 0, 1, α 
and 1 + α, where α is a root of the equation x2 + x + 1 = 0. 
In the two bit representation 0 represent 00, 1 represent 01, 
α represent 10 and 1 + α represent 11. For Stream Cipher 3 
(stream3) we have taken three different LFSRs of length 56, 
64 and 72, respectively. The fixed sequences of {ai}’sfor these 
three LFSRs are the coefficients of a 56 degree, a 64 degree, 
and a 72 degree primitive polynomial respectively. These three 
LFSRs will produce three output streams.  Let these three 
streams be 1 2 13, , , 1, 2,....n n nX X X n =  We will input these three 
streams in a function f : {0, 1}3 → {0, 1} and get a specific 
output based upon the input stream. For this we choose the 
multiplexer function defined as

1 3
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Hence we can get the keystream output as { }1 2, ,....Y Y

where 1 2 3( , , )n n n nY f X X X= .
In stream cipher 4 (stream 4), we have taken the three 

different LFSRs used in stream 3. The fixed sequences {ai} 
of these three LFSRs are, respectively, the coefficients of 56, 
64 and 72 degree primitive polynomial. The three LFSRs will 
produce output streamsXn

1, Xn
2, Xn

3, n = 1, 2,… We will input 
these streams with the output of the previous cycle in a function 
f: {0, 1}4→ {0, 1} and get an output depending upon the input 
stream. The function chosen by us can be defined as:
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Then our keystream is Y0, Y1, Y2……where Y0= 0 by 

convention. Here |1 |x x= −
Stream Cipher 5(stream5) in our discussion is the variably 

modified permutation composition (VMPC) cipher based on 
the VMPC function. Apart from the VMPC function, the cipher 
employs two other operations: they are updates of an internal 8 
bit variable(s) and a swap operation of the internal permutation 
(P). The key scheduling algorithm (KSA) of VMPC transforms 
a cryptographic key from 128 to 512 bits and an Initialisation 
Vector into a 256-element internal permutation (P). The VMPC 
generates the output in bytes (8 bits), rather than in single bit. 

Let P and Q be n-element permutations, representing one-to-
one mappings A→ A, where A = {0, 1,…, n − 1}. Thus the 
dimension of the P, Q arrays equals n. Let k (< n) represent the 
level of the VMPC function and ‘+’ represent addition modulo 
n. A k-level VMPC functionVMPCk is a transformation of P 
into Q, where Q[x] = P[Pk[Pk−1[. . . [P1[P[x]]] . . .]]], x ∈  {0, 1, 
. . . , n − 1}. Here Pi is an n-element permutation such that Pi[x] 
= fi(P[x]), where fi is any function satisfying Pi[x] ≠P[x] ≠Pj [x] 
for i ∈  {1, . . . ,k}, j ∈  {1 . . . k}/{i}. For simplicity, fi is assumed 
to be fi(x) = x + i.(This function is used in the basic reference to 
VMPC above). We will only implement the level 1 VMPC, Q 
= VMPC(P) will be used interchangeably with Q = VMPC1(P). 
See Zoltak10, for a useful description of the VMPC cipher.

Our first two block ciphers (block1 and block2) are Feistel 
ciphers or DES (Data Encryption Standard)-like ciphers. DES 
is a 16-round 64 bit Feistel Cipher. The algorithm is designed 
to encipher and decipher blocks of data consisting of 64 bits 
under control of a 64-bit key. A block to be enciphered is 
subjected to an initial permutation IP, then to a complex key-
dependent computation and finally to a permutation IP-1 which 
is the inverse of the initial permutation. The key-dependent 
computation can be simply defined in terms of a function f, 
called the cipher function, and a function KS, called the key 
schedule. Initial permutation IP is a given table by which initial 
64-bit should be rearranged and split into two half of 32-bits 
each. Let the two halves be initially referred to as L and R. 
Then, after the first iteration, we have

L′   =  R;
R′=  L ⊕ f (R; K);

where ⊕ denotes bit-by-bit addition modulo 2 and K is a 
block of 48 bits chosen from the 64-bit keys. For calculation 
of cipher function f at any cycle, the right block R (32 bits) 
is subjected to a function Ewhich takes this 32 bit input and 
yields a 48 bit output block. The selection of bits (of R) in the 
E function is performed according to anorder Table. The output 
of the E function is XORed with the subkeyK for that cycle. 
The resultant 48 bits are partitioned into eight contiguous 
six bit blocks, B1,…..,B8; formally, B1 B2…..B8 = E(R) ⊕  
K. Each block Bi is the input to a selection function (S-box) 
Si, i = 1, 2,……,6. Each selection function takes 6 bit inputs 
and produces4 bit outputs. Then the 8 blocks S1(B1),S2(B2),…
..,S8(B8) are consolidated into S1(B1)S2(B2)…..S8(B8) through 
concatenation, and a single 32 bit block is obtained. In key 
schedule algorithms a 64 bit key is arranged through two 
permuted choices to obtain a 48 bit key. At each round the key 
block is obtained from the previous one by a left shift.

S-Box:
Due to the similarity in the nature of the S -boxes, a 

proper definition of S1 is sufficient for understanding the S-box 
structure. If B is a block of 6 bits, then S1(B) is determined 
from Table 1 as follow, The first and last bits of B represent in 
base 2 a number iin the range 0 to 3. The middle 4 bits of B 
represent in base 2 a number jin the range 0 to 15. We look up 
the required number in the table in the ith row and jth column. 
It is a number in the range 0 to 15 and is uniquely represented 
by a 4 bit block. That block is the output S1(B) of S1 for the 
input B. For example, for input 011011 the row is 1 and the 
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column is 13. The number that appears in row 1 and column 13 
equals 5 so that the output is 0101. Block1 differs from DES 
in that instead of choosing 8 different S -boxes, we choose 8 
identical selection functions, all equal to S1. This method will 
result in a Feistel Cipher (32 bit + 32 bit; two blocks) with 
a Feistel function simpler than DES. The ciphertext can be 
generated as in DES by supplying a secret key. In block2 we 
have slightly changed the cipher function f of DES. Here after 
passing through all the S-boxes the resultant 32-bit blocks are 
rearranged according to a permutation table.

Block ciphers 3 and 4 (block3 and block4) are based on 
the Substitution Permutation Network (SPN) . An R-round 
SPN requires (R + 1) N-bit subkeys, k1,k2 ,…..,kR+1. A round 
consists of three stages. The first stage is the keymixingstage, 
the N-bit round input is bitwise XORed with the round subkey. 
The second stage is the substitution stage, the resulting block 
is partitioned into M subblocks of size n (N = Mn), and each 
subblock becomes the input to a bijectiven×nsubstitution box 
(S-box)-a bijective mapping from {0, 1}n to {0, 1}n. In the final 
stage, the output from the substitution stage is processed through 
an invertible N-bit linear transformation. A final subkey, kR+1, 
is XORed with the output of round R to form the ciphertext. 
Decryption is accomplished by running the SPN backwards. 
Subkey kR+1 is XORed with the ciphertext, and in each round 
r (from R to 1), the inverse linear transformation is applied, 
followed by the inverse S-boxes. For blocks 3 and 4 we have 
chosen N = 64, M = 8, n = 8 and R = 6. The only difference 
between them is that in block 3 we have used the S-Box as a 
mapping function a linear function but in case of block 4 the 
non-linear mapping function (S-Box) is used instead of linear 
function.

The final block cipher algorithm of our discussion (block5) 
is MARS. MARS is a shared-key block cipher, with a block 
size of 128 bits and a variable key size, ranging from 128 to 
over 400 bits. MARS takes as input (and produces as output) 
four 32-bit data words. The process of MARS consists of three 
stages: forward mixing, cryptographic core and backward 
mixing.

The first phase provides rapid mixing and key avalanche, 
to frustrate chosen-plaintext attacks, and to make it harder 
to strip out rounds of the cryptographic core in linear and 
differential attacks. It consists of addition of key words to the 
data words, followed by eight rounds of S-box based, unkeyed 
type-3 Feistel mixing (in ‘forward mode’).The second phase 
is the ‘cryptographic core’ of the cipher, consisting of sixteen 
rounds of keyed type-3 Feistel transformations. We perform the 
first eight rounds in ‘forward mode’ while the last eight rounds 
in ‘backwards mode’. The last phase again provides rapid 
mixing and key avalanche, to protect against chosen-cipher 

text attacks. This phase is essentially the inverse of 
the first phase, consisting of eight rounds of the same 
type-3 Feistel mixing as in the first phase (except in 
‘backwards mode’), followed by subtraction of key 
words from the data words.

4.   FiShEr’S DiSCriminAnt    
     analysIs

We  provide a discussion of  Fisher’s 
Discriminant Analysis following Johnson and Wichern5. 
Suppose have g populations. There is a variable of interest 
X, using which we want to discriminate between the 
populations for future test data. In FDA, it is not necessary 
to assume that the populations are multivariate normal. 
However, we assume that the population covariance matrices 
are equal and nonsingular. If the covariance matrix of X in 
the ith population is Σi, then Σ1 = Σ2 = ··· = Σg=  Σ, where 
det(Σ) >0 and Σ is a p x p matrix. Let the mean of X in the 

ith population be denoted by µi, i=1,2,…..,g. Let  
1

1 g

i
ig =

µ = µ∑
be the grand mean of X. Let B0 be the between group sum of 
squares and products given by ( )( )0 0

Tg
i i iB == µ − µ µ − µ∑ . 

We consider linear combinations TY l X=  where l is some 
appropriate p l×  vector, to transform X to a scalar . The mean 
of Y in the ith population is ( ) ( )|T T

i iE Y l E X l= µ = µ
,
 and the 

variance of Y  in the ith population is a constant (which does 
not depend on i) and equals  ( ) ( )T TVar Y l Cov X l l l= = Σ . 
Let T

iY ilµ = µ be the mean of Y in the ith population. 
Then the overall mean of Y over all the populations is  

1 1 1
1 1 1g g T T g T

Y i iY i i i il l l
g g g= = =

 
µ = µ = µ = µ = µ 
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.
. We 

want to choose the vector l, so as to maximise the separation 
between the populations with respect to the transformed 
variable Y. We will measure this variation with the following 
quantity
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, and to choose l so as to 

maximise the separation between the populations, one has to 
find the value of l which maximises the right hand side of the 
above equation. However, normally μi’s and Σ will be unknown 
and in practice we will use estimates from the sample. Let ni be 

the sample size of ith group. Thus we will use 1
1

in
i j ij

i

x X
n == ∑

as an estimate of μi, and 
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as an 

Col no.->
row no.↓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

table 1. S-Box
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estimate of µ , and   SPooled  = W/(n1 +n2 +n3 +…….+ng- g),  as 

an estimate of Σ where ( )( )11
j

Tg n
j ij i ij ii

W X X X X==
= − −∑ ∑ . 

Ignoring the constants, we can therefore maximise the 
separation between the populations by maximising the measure 

0
ˆT

T

l B l
MS

l Wl
= , over l, where ( )( )0 1

ˆ Tg
i i ii

B X X X X
=

= − −∑ .

Such maximisations are standard problem in linear 
algebra and the quantity MS is maximised by l = ei, where ei is 
the eigenvector corresponding to the largest eigenvalue of the 
matrix 1

0
ˆW B−

.
Let 1, 2 ,..., se e e be the eigenvectors corresponding to 

the nonzero eigenvalues  1 2 ... sλ ≥ λ ≥ λ  of 
1

0
ˆW B− Note that

min( 1, )s g p≤ − . We will call the quantity 1
Te X   the 1st 

discrimination function. Notice that  1  e maximises the 
measure MS. The vector 2l e= maximises the measure 
MS subject to 1 0Te Wl =   i.e. subject to the constraints that 
the first two discriminants are uncorrelated. Similarly, the 
vector , 1, 2,...,je j s= maximises the measure MS subject to 

0, 1, 2,... 1T
ie Wl i j= = − . The jth discrinionant is uncorrelated 

with all the previous ones. 
The discrimination proceeds as follows: Let 

1 2( , ,.... )T T T
sY l X l X l X= . using training data, one computes 

the mean of Y in that population. For a new test case, one first 
computes the vector Y of discriminants, and then determines 
the Euclidean distance of this vector from each of the 
population means of Y. The case is assigned to the population 
that minimises this distance.

5.  F-rAtio
Sometimes the lengths of the feature vectors are too 

large, and it becomes unmanageable to use the entire feature 
in the analysis. In such cases we can reduce the length of the 
vector by retaining only those components which have the 
greatest discriminating capacity. This is done by computing 
the F-ratio of between groups and within groups sum of 
squares, and choosing those components with the largest 
F-ratios. The F-ratio is calculated as follows: let the given data 
for a particular component be denoted by xij, the observation 
on the jth case of for the ith population. Then the F-ratio is 

calculated as ( )
( )
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. Here n is the number of cases for each 

population, and g is the number of populations. The F-ratio 
uses the same philosophy and measure as in Section 4. One 
determines the separation between the populations for each 
scalar variable.  We have retained the top five components.

6.  dIscrImInatIon Based on 
autocorrelatIon
Given a finite set of time series data { }1, 2 ,..., nx x x the 

autocorrelation coefficient at lag h measures the correlation 
between observations h time units apart. The autocorrelation 
coefficient ( )hρ at lag h is formally defined as:

 1

2
1

( )( )
( )

( )
t

n

n h
t h t

tt

x x x x
h

x x
=

−

+

=

− −
ρ =

−

∑
∑

where 
1

n

i
ix x

=
= ∑ .

The autocorrelation coefficients always lie between -1 
and 1 and a greater magnitude of the autocorrelation coefficient 
at lag h indicates greater amount of linear dependency between 
data shifted at lag h. Our basic input is the raw sequence of 
0’s and 1’s of the cipher text. We will use features based on 
autocorrelation and discrete Fourier transform of the cipher text 
data. We classify cipher text, which have been encrypted by any 
of the ten different algorithms. For training we have chosen 200 
files of sizes 1k, 2k and 5k each from each of the 10 different 
algorithms. Thus there are 2000 training files of each size.  

7. FEAturES Based on autocorrelatIon
7.1 Feature based on raw Cipher

We take the raw sequence of ‘0’s and ‘1’s from each cipher 
file and construct the autocorrelations of lags up to 20 over 
all the cipher files. This produces a matrix of autocorrelations 
of dimension 2000×20. We then construct the F-ratios 
corresponding to each lag, and choose the 5 lags giving the 
highest autocorrelation and get a 2000×5 matrix. We treat this 
as a sample of 2000 five dimensional observations with known 
class memberships, and perform FDA on this data.

7.2 Feature based on Proportions of ‘1’ in 100 Bits
Here we take the raw sequence as in previous feature then 

choose segments of 100 bits (sequence of ‘0’s and ‘1’s) from 
each cipher files, with 50 bits of overlap between the successive 
segments. For each segment, we compute the frequency of 1’s, 
and resulting sequence of frequencies is now our feature data. 
We calculate the autocorrelation from those data, find the five 
best discriminating lags and perform Fisher’s discrimination 
as above.

7.3 Feature based on Length of the Largest run in 
100 Bits
We again choose segments of 100 bits. In each segment 

we choose the feature to be the length of the largest run of 1’s 
in this segment. This length is then divided by 100 (the length 
of the segment). We calculate the autocorrelations for the 
resulting sequence. We calculate the five best discriminating 
lags. Fisher’s discrimination is then performed as in the 
previous cases.

7.4 Feature based on number of runs of ‘1’ in 100 
Bits
Again we choose segments of 100 bits. In each segment 

we choose the number of runs of 1. This number is then 
divided by 100 (the length of the segment). We calculate the 
autocorrelation from the resulting sequence. We calculate the 
five best discriminating lags and Fisher’s discrimination is then 
performed as in the previous cases.

8. dIscrImInant analysIs Based on the 
DiSCrEtE FouriEr trAnSForm 
The discrete Fourier transform (DFT) is actually a 

transformation from the time domain to the frequency domain. 
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The procedure for constructing the Discrete Fourier Transform 
is available in many standard texts such as Cormen4, et al. 
and a more practical method was given by Cooley and Tukey3 
called the Fast Fourier Transform. The only condition for 
implementing this process is that the series should be of a 
length which is a power of 2. If not then we pad the series with 
some zeros at the end to take it to the next power of 2. For DFT 
we use the same features corresponding to Sections 7.2, 7.3 
and 7.4 as done in case of autocorrelation.

9.  results
With the database as described in Section-2 we have found 

2000 encrypted file form 200 file of same size and key type 
applying 10 encryption algorithm. We classify each of these 
2000 files in terms of the source algorithms using the FDA 
technique. The results are in matrix form for particular features, 
size of files and key types. Tables 2-5 provide a selection of 
results generated by FDA for different such combinations. The 
five stream cipher algorithms are denoted as S1 ,…,S5., and 
the five block cipher algorithms are denoted as B1 ,…,B5.The 
rows represent true membership and the columns represent 
predicted membership. The total of each row in any given table 

is 200 and the diagonals represent correct classification. If the 
classification is random, 200 files will be correctly classified 
on the average. We wish to show that FDA provides better than 
random classification. If the number of correct classifications 
appear to be significantly higher than 20 for the diagonal cells 
of the tables (or significantly higher than 200 for the sum of the 
diagonals) one could claim that the method is better than random 
allocation. While we provide the tests to determine whether 
the number of correct allocations is better than that of random 
allocation in the next section, the tables immediately draw our 
attention to the fact that FDA based on the original cipher is 
hugely successful in identifying ciphers encrypted by block2. 
Apparently the non-linear S-boxes impart a vulnerability in the 
ciphers which is exploited by FDA.

10. tEStS oF hyPothESiS
If the FDA based classification is better than random 

classification, one would expect that the sum of the diagonals 
of a table of the above type to be significantly higher than 200 
on the average. To explore this, all tables of a particular feature 
were chosen, and the cases where the training files were not 
repeated as test files were considered. There are 30 such tables 

s1 s2 s3 s4 s5 b1 b2 b3 b4 b5
s1 90 1 10 15 53 2 8 5 5 11
s2 12 49 22 20 24 9 38 13 3 10
s3 5 7 85 34 17 6 2 24 9 11
s4 8 36 31 49 18 19 7 11 9 12
s5 12 27 14 13 48 13 28 26 8 11
b1 19 17 14 15 24 10 39 19 28 15
b2 9 6 5 1 6 2 138 7 17 9
b3 25 14 20 21 16 17 24 15 32 16
b4 20 7 21 16 21 9 31 27 29 19
b5 16 13 19 25 12 18 38 17 2 4 18

table 2.  no of files for test : 2000, trained with : key type (Single) 
–size (1k), tested with : key type (Single)–size(2k), 
feature : autocorrelation on original (raw) cipher

table 3.  no of files for test : 2000, trained with : key type 
(multiple) – size (1k), tested with : key type (Single)–
size (2k), feature : autocorrelation on original (raw) 
cipher

s1 s2 s3 s4 s5 b1 b2 b3 b4 b5
s1 6 125 23 6 12 0 18 2 7 1
s2 7 30 20 4 64 5 46 4 10 10
s3 26 24 37 16 44 4 2 2 3 42
s4 15 24 31 11 35 3 9 15 13 44
s5 6 69 31 11 16 1 32 21 6 7
b1 13 32 16 17 33  6 45 8 10 20
b2 2 12 3 5 20 2 143 5 5 3
b3 18 33 20 15 31 6 33 10 14 20
b4 12 45 23 13 34 5 38 9 11 10
b5 14 30 20 9 43 7 32 16 15 14

table 4.  no of files for test : 2000, trained with : key type 
(multiple) – size(5k), tested with : key type(Single)–
size(5k), feature : autocorrelation on frequency 1 in 
100

s1 s2 s3 s4 s5 b1 b2 b3 b4 b5
s1 15 3 10 20 51 3 56 33 0 9
s2 25 10 2 9 57 1 69 19 0 8
s3 21 8 6 17 23 6 103 9 0 7
s4 33 3 5 24 76 0 21 23 0 15
s5 18 1 2 8 124 3 18 11 0 15
b1 25 4 9 24 57 4 43 21 1 12
b2 38 3 7 20 54 3 41 11 0 23
b3 33 1 5 29 43 6 44 27 1 11
b4 27 2 9 20 61 4 40 23 0 14
b5 32 4 5 27 56 1 42 20 0 13

table 5.  no of files for test : 2000, trained with : key type 
(Single) – size (1k), tested with : key type (multiple)–
size(1k), feature : autocorrelation on run 1 in 100

s1 s2 s3 s4 s5 b1 b2 b3 b4 b5
s1 40 31 24 39 21 5 20 5 13 2
s2 47 24 24 30 30 5 22 1 16 1
s3 56 27 16 26 21 8 20 4 20 2
s4 44 41 11 25 26 7 20 7 17 2
s5 50 31 10 36 28 9 16 4 16 0
b1 48 27 19 30 28 10 17 4 15 2
b2 47 27 13 26 29 14 27 7 8 2
b3 34 26 26 27 30 10 16 10 15 6
b4 39 37 26 27 26 7 21 3 13 1
b5 40 33 16 32 31 9 20 5 12 2
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for each feature. In each case, we looked at the distribution 
of the sum of the diagonals over the 30 tables, and did a test 
of hypothesis to determine whether the location parameter 
was greater than 200 using different parametric and non-
parametric tests. Assuming that the sum of the diagonals has a 
a normal distribution with mean µ , the t-test for the hypothesis

0 : 200H µ =  against the greater than alternative over the 30 
tables led to p-values of 0, 0.0003 and 0.0010 for the FDA 
for autocorrelation based feature on (i) the raw cipher, (ii) the 
proportion of 1 in 100 bits and (iii) the length of the largest run 
in 100 bits, respectively. For nonparametric tests, even the least 
powerful sign test for the hypothesis 0 : 200H η =  against the 
greater than alternative produces p-values of 9.3x10-10, 0.0026, 
and 0.0026, respectively, where η  is the population median 
of the sum of the diagonals. In each of the above cases the 
observed statistics are highly significant, suggesting that the 
FDA based methods may be doing substantially better than 
random classification. While the above analysis involves 
only sums of the diagonals of the tables, one should check 
whether the general distribution of the observations along 
the cells of the tables follow an overall nonrandom pattern. 
under randomness, each entry of the table is a random variable 
with mean 20. A test for this null hypothesis, 0 ,: 20i jH θ = is 
provided by the standard Pearson’s chi-square statistic (with 90 
degree of freedom), where ijθ  is the expected frequency in the 
ijth cell. For Tables 2-5, these statistics are 1782.30, 2347.300, 
2473.60 and 868.40 respectively, and in each case the p-value 
is practically zero. Clearly the overall assignment along cells 
is not random.

11. comparIson wIth hmm Based and 
othEr CLASSiFiCAtionS
We compare our results with the hidden Markov HMM 

(model) based classification results of Ray7, et al. If there is 
a difference in FDA based results over the HMM based ones 
it would be expected that the differences of the sum of the 
diagonals of the confusion matrices would be different from 
zero for the same type of key and file size. To compare we 
have chosen 30 tables where the training and test files are not 
the same for each of common feature used (Proportion of 1 in 
100 and Run of 1 in 100 bits for autocorrelation based on FDA 
and HMM based classification) and then taken the differences 
of their diagonal sums. We ran t-tests of the hypothesis 

0 : 0H µ = against the not equal to alternative where µ is the 
mean of the differences of sums of diagonals (between the 
FDA and HMM based classification) over the 30 tables, under 
the assumption that the difference of the sum of diagonals 
is normally distributed. The p-values were 0.790037 and 
0.2364 for Proportion of 1 in 100 bits and Run of 1 in 100 
bits respectively. The sign test for 0 : 0H η = against the not 
equal to alternative produces p-values of 0.855 and 0.3615, 
respectively, where η  is the population median of differences 
of sums of diagonals. All the statistics suggest the lack of 
any significant difference. Neither the HMM or FDA based 
methods are necessarily better than the other.

It is relevant, in this connection to refer to the work done 
by Saxena8 at the Indian Institute of Technology, Kanpur, 

which was brought to our attention by one of the referee. 
This work (and the references therein) has concentrated on 
the problem of classifying two sets of cipher text generated 
by Blowfish: RC4 (B_R) and Camellia: RC4 (C_R). This 
work has used test vectors of length 320 bits at a time, and 
attempted to optimise the performance. When a cipher text 
generated by a particular cipher is classified with more than 
50 per cent accuracy it is referred to as trivially-good-test 
vector. In the process the linear programming optimisation 
technique is used. Later various positions (even, odd, random, 
etc.) of the test vectors are changed and the performance 
is analysed to determine whether they qualify as good test 
vectors. For classification various methods such as support 
vector machines are used. 

Our experimental set up is entirely different from the work 
described in the previous paragraph. We have also considered 
a larger number of ciphers. A comparison of the two methods, 
however, could be meaningful. This will require an extensive 
study where both methods are compared under the same 
footing. We hope to take up this study in the future. 

12. ConCLuSionS AnD FuturE rESEArCh
In this study we used the FDA to classify encryption 

algorithms using different feature vectors. Further studies are 
necessary to establish the strength of the classification process, 
but the indications of this limited study are clearly encouraging. 
We strongly believe that this approach should be further 
explored; in addition, a full scale comparison of this method 
with those based on the group of techniques represented by 
Saxena8 would also be worthwhile. 
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