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1. INTRODUCTION
First usage of landmines dates back to 13th century when 

Chinese used contact fused land mines to stop Mongols1. Land 
mines are mostly placed between countries in war times. It is 
reported that more than a hundred million land mines exist 
in more than 80 countries2. Because of landmines3, more 
people are being killed or injured every year. After the start of 
World Wars, many countries started using land mines more. 
Underground object detection has become more important1 as 
a result.

The detection of land mines problem is a difficult process 
due to many factors: large variety of landmine types, different 
terrain, or weather conditions, and human or natural waste4, 
etc. Because of the fact that many modern land mines contain 
little or no metal, traditional field detectors cannot produce 
any good results5. Some sensors for underground inspection 
include acoustics and quadruple resonance, ground penetrating 
radar (GPR), electro-magnetic induction sensing (EMI) and 
neutron backscattering6. Recently, GPR has become one of the 
commonly used sensors for many3,7-9 researchers.

Sinha and Mehta9 review the nature of minefields and 
evaluate several landmine detection methods. In conclusion, 
they state that GPR offers better detection possibilities. Mine 
detection using GPR data and signal processing techniques has 
a long history10. The signals gathered from sensing devices 
are processed using different signal and image processing 
techniques. 

Some methods applied for mine detection are background 
removal11, hidden Markov models (HMMs)12,13, using  
frequency domain features3, Fuzzy K-nearest neighbours4, edge 
histogram descriptors14, and adaptive approaches for anomaly 
detection15, etc.

Due to the real-time requirements many researchers 
developed two staged algorithms: pre-screening and feature-
processing stages. The first phase aims to detect potential 
interest points quickly and passes them to a more detailed 
algorithmic processor. Torrione6, et al. state that feature-based 
processor helps to reduce false alarm rate (FAR) significantly 
while keeping the probability of detection the same.

Gader8, et al. report that ‘feature based methods out 
performed energy detectors’. Frigui3,14, et al.  propose to use 
edge histogram descriptors (EHD). They use a simple edge 
operator to identify and group edges. They claim that EHD 
helps to reduce false alarm rate without effecting the detection 
rate.

In this study, a 3-step method is proposed to locate and 
discriminate land mines: 
(i)  Processing B-scan images according n-row average 

subtraction 
(ii)  Using Min-max normalisation for the intensity values and 
(iii)  Scaling images. 

Then, the paper tests and analyses proposed method using 
3 common algorithms from the literature.

2. METHODOLOGY 
Before discussing about NRAS, properties of the dataset 

need to be explained. 
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2.1 Dataset used
The dataset has been provided by The Information 

Technologies Institute of the Scientific and Technological 
Research Council of Turkey (TUBİTAK) - Gebze, Kocaeli. 
The data has been collected:  
•   Using soft soil and 1 GHz GPR signals
•   For two types of objects: metal and plastic
	 	10 cm - 25 cm diameter and 4 cm high metal disc  

 landmines
	  5-liter standard cylindrical plastic container   

 landmines
• For different object depths: 3 cm, 10 cm, 20 cm, 30 cm, 

and 40 cm
• For different antenna heights: 5 cm, 10 cm, 15 cm, and 20 

cm. 
There are also some images which have been captured 

when there is no test object.
First, A-scan signals are captured16,17, Fig. 1. As it is 

seen from the figure, there is high fluctuation in the first few 
rows in depth direction where the signal passes from air to the 
ground. This part of the signal is called ground bounce. It is 
also important to note that the average intensity is very high 
(dashed line). 

(ii) True negative (TN) images: images which do not contain 
any query object

(iii) Images which contain a query object but whose position 
are not recorded.
The sensing limit of GPR devices change according to 

the frequency used18. The objects are usually buried less 
than 10 inches deep7,12,19. But in this study, there are some 
objects which are buried 30 cm and 40 cm deep. When an 
object goes beyond the sensing limits of GPR sensors, the 
object cannot be captured in the image. This can be seen in  
Fig. 3 through the images in which the object depths are 20 cm 
- 30 cm and antenna heights are10 cm, 15 cm, and 20 cm. 

For every object depth, images have been acquired using 
different antenna heights. Both, height of antenna from the 
ground and the buried object depth effect the detection. It 
can be seen from Fig. 3 that for the same object depth (rows), 
when the height of antenna changes (columns), the object 
is detected in deeper positions in the image. In the figure, 
although the object used in all scans is the same object, it is 
captured in deeper positions in the images. After a point the 
object disappears from the visible scene of the image. Thus, the 
images which are out of the detection limits of GPR have been 
used as TN images.

As a result, for exact comparison of the results, the images 
whose exact object positions are not recorded have not been 
used in the tests. And, we have the following number of images 
in tests:
(i) 310 TP images:
 (a) 250 metal mines,
 (b) 60 plastic mines.
(ii) 180 TN images.

2.2 N-row Average Subtraction (NRAS)
Row mean subtraction (RMS) is a common method in 

image processing20,21. Hence, row mean is too much effected 
from the fluctuations in the current row, RMS provides lower 
results compared to N-row average subtraction (NRAS) for 
many algorithms tested. 

When GPR signals pass through a medium with the same 
properties, they are reflected back with the same signal levels. 
This produces same signal levels like beam bands for the 
entire row which can be seen in Fig. 4 on the rows from 140 
to 200. When beams pass through a different medium, they 
are returned with different peaks (higher intensity levels on a 

Figure 1.  A-scan signal.

Figure 2. B-scan image captured for a metal object which is 
buried under 3 cm.

To have better signal to noise ratio (SNR), every point 
is scanned several times (R - usually 4 or 8). Later, the signal 
is digitised and averaged (Eqn 1)16. For better detection, the 
signals have been digitised using 2-byte intensity resolution 
(from 0 to 65535).

1

1( , , ) ( , , )
R

A
r

a x y z a x y z
R =

= ∑                                              (1)

where R is the number of A-scan signals taken and ( , , )Aa x y z  
is the averaged A-scan signal over R scans.

Finally, A-scan signals are combined together to form 
B-scan images. Figure 2 shows two B-scan images where 
image (b) contains dashed rectangle to highlight the object 
region from the image (a). 

Thus, 10 B-scan images have been collected for every 
object depth and antenna height (height of antenna from the 
ground). Then, the images have been classified into three 
categories; 
(i) True positive (TP) images: images which contain query 

object whose type and position are known
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region compared to the pixels around) or holes in the signal. 
These peaks and holes serve as a signature of the object being 
captured.

The parallel bands show the extra information that does 
not contain object specific information. The peaks and holes 
appear on the object regions. 

Using these parallel bands, the images can be normalised. 
As an example, for processing according to 3-row average, 
the average of the current, preceding and the next rows is 
subtracted from every pixel intensities of the current row.Then, 
the real object information (peaks and holes) is left and extra 
information is removed from the signal:

( )1 1, ,r r rcra − += µ µ µ µ
                                                   (2)

( ) ( ), ,r ra x z a x z cra= −
where rµ  is the average of rth  row and cra. is the average 
of current, preceding and the next row averages. Later, cra is 
subtracted from every element of the current row.  

Figure 5 shows three images: 5(a) a metal object buried 
under 10 cm (for a better visualisation, the first fifty rows 
have been removed), 5(b) after processing according to 3-row 
average 5(c) after re-sizing image to 50 per cent. As it can 
be seen from the figure, 3-row average subtraction method 
preserves most of signal properties while removing extra 
information. Further more, the signatures are preserved even 
after significant image scaling22.Figure 4.  Colouring images according to the intensity levels.

Figure 5. Images before and after processing.
(a)

(b) (c)

Figure 3. GPR signals taken from different depths and antenna heights.
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2.3 Runtime Complexity
NRAS calculates the average of every row. Then, n-row 

average is subtracted from row every element. Therefore, it 
uses 2 hw operations where h and w are the dimensions of 2D 
B-scan image. After NRAS, data is Min-max normalised 2hw 
operations.  

As a result, the runtime complexity of the proposed uses 
4 hw operations. Thus, the runtime complexity is ( )O hw . This 
complexity is the same for the background removal method 
proposed by Sezgin11, et al. However, they use 56 hw operations 
for a similar operation. 

As a result, the method shows reasonably better runtime 
performance. By the use of image scaling, the method is 
promising for online detection.

3.   IMPLEMENTATION AND RESULTS
The effects of NRAS have been analysed using three 

common algorithms: ANN, SVM, and K Means. For 
comparison of the results, algorithms have been tested using 
4 test settings:
(i)  No Normalisation (NN): raw images without  

       any operation.
(ii) Min-max normalisation (MM): The image  

intensity is normalised to the range from 0  to 1. And the 
image crops are taken for testing.

(iii) NRAS: (where n is an odd number between 1 and 7). 
Entire image is processed according to NRAS. Then, the 
image crops are taken.

(iv) 3-row average+ Min-max normalisation (3RM): Entire 
image is first processed according to 3-row average 
subtraction. Then, the image is Min-max normalised to 
the range from 0 to 1. And, the image crops are taken.
In the end, all tests have been implemented using 

3 different image scales22 33 per cent, 25 per cent, and  
20 per cent.

There are 180 negative (TN) B-scan images, 250 B-scan 
images which contain a metal landmine object, and 60 B-scan 
images which contain a plastic landmine object. Every B-scan 
image is 256-by-180 pixel image where the 256 rows represent 
the depth. Objects usually create a 60-by-90 signature in the 
image. 

Because dataset is small, 60-by-90 image crops have been 
taken from the existing negative images. Hence entire image 
is negative (no query object in it), any part of the image can 
be cropped as a new negative image. Thus, 6 image crops 
have been taken from random coordinates of each TN image. 
As a result, a set of ( )180 6 1080× =  TN images have been 
produced.

However, TP images cannot be reproduced with the way 
negative images have been reproduced. To produce more test 
sets, the program was run 10 times. In every run, the order of 
images have been shuffled randomly to construct different test 
and data sets: as a total of ( )( )10 1080 250 60 6 13900× + + =)) = 13900 test 
images. 

3.1 Performance Measurement and Formulas
K Means is among top ten algorithms in data mining23. 

It is an unsupervised clustering algorithm. However, because 

 Object detected
Metal Plastic Nothing

Actual object
Metal 1156 789 555
Plastic 91 85 424
Nothing 1850 2281 6669

Table 1.  Object discrimination for K Means

 Object detected
Metal Plastic Nothing

Actual object
Metal TP FC FN
Plastic FC TP FN
Nothing FP FP TN

Table 2.  Truth table for the confusion matrix

the number of test objects in three classes are very different, 
K Means has been used like a classifier in the tests below. As 
there are only 60 plastic test objects, the cluster with the most 
number of items (e.g. a cluster with 1000 items) cannot be the 
cluster for plastic objects. Later, the objects assigned to the 
cluster have been verified if they are assigned correctly or not. 
By this way, the clusters of K Means have been used like a 
classifier.

Table 1 has been produced with the following conditions:
• K Means with K=3; three classes: metal objects, plastic 

objects and None exists,
• for 1080 TN and 310 TP (250 metal and 60 plastic 

objects), 
• 60-by-90 image crops have been scaled to 25 per cent,
• program was run 10 times,
• using MM (test setting 2). 

K Means has identified 1156 metal objects correctly as 
metal; 789 metal objects have been misclassified as plastic and 
555 metal objects have been misclassified as Nothing. Thus, 
( )1156 85 6669 7910+ + =  images out of 13900 have been 
identified correctly. That is 56.9 per cent of all objects have 
been classified correctly.

Table 2 shows the truth table for the confusion matrix. 
When an object is identified correctly as in the dataset, it is 
count as TP or TN. If a positive image classified as negative, 
then it is false negative (FN). When a metal object is classified 
as plastic object, it cannot be said to be FN or TP. Thus, in the 
results, they are assumed to be false classification (FC). 

Object detection ratio (ODR) is the ratio of objects detected 
as in the dataset (TP+TN) to the total number of objects

7910 56.9%
13900

TP TNODR
AllObjects

+
= = =                            (3)

Positive object discrimination (POD) is the ratio of TPs 
to the number of all positive objects. ( )1156 85 1241+ =  of the 
positive images have been classified correctly. And, there are 
totally ( )10 310 3100× =  positive objects used in 10 runs. This 
gives 40 per cent positive object discrimination accuracy.

1156 85 40%
3100

TPPOD
AllPositives

+
= = =                      (4)

False alarm rate (FAR) is the ratio of negative objects 
identified as positive (FP) to the total number of negatives. 
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1850 2281 38.3%
10800

FPFAR
AllNegatives

+
= = =               (5)

Then, the Overall Performance can be defined as 
follows:

( )
2

POD ODR FAR
OP

+ −
=                                          (6)

3.2 Implementation using K Means 
The implementation details described above have been 

used for three different image scales. Table 3 shows the results 
for K Means for the test settings given. It can be seen from the 
table that there is high FAR ratio, except NRAS test settings. 
Secondly, usage of MM improves POD result. However, it also 
increases FAR and thus decreases ODR. 

 o C=0, 
 o Epsilon=2,
where C is the cost and Epsilon is the tolerance of the 
termination criteria. 

Table 4 shows the average results from 3 scales. Firstly, 
the results are better than the results using K Means. The 
decrease in FAR is notable. Furthermore, the increase in POD 
and ODR did not increase FAR. And, FAR has decreased to 
0.22 per cent.

POD (%) ODR (%) FAR (%) OP (%)

NN 37.85 85.92 0.28 61.7

MM 54.73 89.78 0.15 72.2

1R 74.09 94.15 0.09 84.1

3R 70.11 93.21 0.15 81.6

5R 69.25 93.05 0.12 81.1

7R 68.71 92.95 0.09 80.8

3RM 80.22 95.42 0.22 87.7

Table 4.  The results for SVM

Similar to K Means, usage of MM has provided some 
improvement on the results. And, application of NRAS 
has provided better results than MM. However, the best 
results have been achieved using 3RM. While the OP for 
NN is 61.7 per cent, it increases to 81.6 per cent with the 
application of 3R. 1R has produced better results than 3R 
and 5R. However, the best OP is provided by 3RM which 
reaches to 87.7 per cent.

3.4 Using Artificial Neural Networks
Artificial Neural networks (ANN)26 is another very 

common Machine Learning algorithm. ANN aims to imitate 
brain neurons to reach the same brain power. 

Four settings have been used for Neural network tool 
from Rapid miner. The tool uses Sigmoid activation function 
by default. Then, the following properties have been selected 
for the tests: 
• Number of training cycles: 5,
• Learning rate: 0.7,
• Momentum: 0.7,
• Error epsilon: 0.02,
• 2 hidden layers with 20 Nodes.

The results, presented in Table 5, are better than the results 
for SVM. Similar to K Means 5R produce better results than 

Table 3. The results for K Means

 POD (%) ODR(%) FAR(%) OP(%)
NN 25.2 66.5 21.7 35.0
MM 35.5 59.3 33.9 30.5
1R 25.9 83.5 0.0 54.7
3R 25.9 83.5 0.0 54.7
5R 26.7 83.7 0.0 55.2
7R 25.9 83.5 0.0 54.7
3RM 63.2 68.6 29.9 51.0

5-row average subtraction (5R) has provided the best 
overall performance (OP) with 55.2 per cent. Because the 
POD results for NRAS are very low, 3RM can also be noted 
for its good result. At this test setting, POD increases from 
25.2 per cent to 63.2 per cent and a relative increase in ODR 
is provided.

The results for 1R, 3R and 7R are the same. But, 5-row 
average subtraction (5R) gives relatively better result than the 
others. Despite the results are low, application of NRAS and 
3RM increases the OP notably. The low results are mostly 
because K Means is an unsupervised clustering algorithm.

3.3 Using Support Vector Machines
Support vector machines (SVM) is one of the most 

studied and well-known algorithms in Machine learning23. It 
provides linear and non-linear classification algorithms for 
both binary and multi-class representations. Original algorithm 
was proposed by Vapnik and Chervonenkis24. SVM creates a 
hyper-plane between the classes. When a new testing item is 
projected, the class is defined according to the position on the 
hyper-plane. 

The method has been tested using Rapidminer25 toolbox, 
using 4 test settings with the following conditions. In the tests
• There are 310 positive and 1080 negative image crops,
• Image crops have been resized to 20 per cent, 25 per cent 

and 33 per cent,
• 5-Fold cross validation has been used,
• Lib SVM from Rapid miner with the following parameters 

has been used:
 o SVM type: C-SVC, 
 o Kernel type: linear, 

Table 5.  ANN results 

POD (%) ODR (%) FAR (%) OP (%)
NN 77.42 94.82 0.19 86.0
MM 78.17 94.94 0.25 86.4
1R 76.99 94.82 0.06 85.9
3R 78.82 93.24 2.62 84.7
5R 79.25 95.37 0.00 87.3
7R 78.06 95.11 0.00 86.6
3RM 87.74 97.00 0.34 92.2
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other NRAS settings. Application of 5R has provided slightly 
better POD and ODR accuracies than NN. The application of 
3RM has increased both POD and ODR results while providing 
a slender increase in FAR.

ANN has provided better OP than the other two  
algorithms. Even though, the OP for NN is high, 86.0 per cent, 
it reaches to 92.2 per cent by the application of 3RM. And, this 
is the best overall performance among all three algorithms. 

4. CONCLUSIONS
Landmine detection is still very important for many 

countries in the world. It requires fast and accurate detection 
performance. This paper proposes a method which provides 
fast processing while increasing the accuracy. The algorithm 
consists of three steps: NRAS; Min-max normalisation; and  
Image scaling. Application of the proposed method not only 
increases ODR and POD results in the tests but also provides 
better runtime performance. 

The positive effect of NRAS is seen on all testing 
algorithms. For K Means algorithm, although, Min-max 
normalisation increases POD, but due to high FAR result, the 
ODR decreases to 59.3 per cent. However, when 3RM is used, 
both ODR and POD results increase comparably. The high 
FAR rate for K Means is due to the nature of the algorithm.

SVM  increases POD from 37.85 per cent to 80.22 per 
cent. Moreover, it provides notably low FAR results compared 
to the other algorithms. Although, ANN has a bit higher FAR 
than SVM, it provides higher results than the other two testing 
algorithms.

According to our observation, the low results can be due to 
small data set used. Future studies will focus 3D datasets with 
more clutter and large number of TP objects. The experiment 
can give better opinion using 3D data. 
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