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1. IntroductIon
The finger-knuckle-print (FKP) based recognition system 

is gaining momentum ever since the work of Zhang1, et al. 
who have developed an acquisition system to capture the FKP. 
After cropping the region of interest (ROI), a competitive 
coding scheme is employed to extract the FKP features. FKP 
based recognition scheme is also presented by Zhang2, et al.. 
The FKP images are acquired by a specific data acquisition 
device. Orientation and magnitude information are extracted 
by the Gabor filter. This system has high recognition accuracy 
and works in real time. An effective FKP authentication 
system is developed by Zhang3, et al.. They have extracted an 
ensemble of local and global features of FKP. The local features 
constitute the orientation information extracted using the Gabor 
filters based on the competitive coding scheme. When scale 
of the Gabor transform tends to infinity, it degenerates into 
the Fourier transform from the viewpoint of time-frequency 
analysis. Global features are the Fourier transform coefficients 
of an image. Combining local and global information improves 
the recognition accuracy as compared to that due to either local 
or global information.

Zhang4, et al. have investigated the image local 
features using the phase congruency model that supports 
the psycho-physical and neuro-physiological evidences for 
FKP recognition. The local orientation and local phase are 
extracted from a local image patch while computing the phase 
congruency. These local features are independent of each other 

and represent diverse aspects of image local information. The 
three local features are computed under the framework of phase 
congruency using a set of quadrature pair filters. These three 
local features are integrated at score level fusion to improve 
FKP recognition accuracy. Such local features can also be 
naturally combined with Fourier transform coefficients, which 
are global features. 

Morales5, et al. have presented a new approach for 
the verification of FKPs of a person. Gabor filter is applied 
to enhance FKP information and a scale invariant feature 
transform (SIFT) to extract features. The SIFT features 
obtained after Gabor enhancement of principal finger knuckle 
lines improve the performance of the verification system. Zhu6 
has presented SURF based knuckle print recognition system. 
Random sample consensus (RANSAC) has been utilised to 
establish the geometric constraint to remove false matching. 

Zahra7, et al. have used both the intensity and Gabor 
features of each FKP. The best recognition performance is 
obtained when the features of all fingers are used.

An attempt is made here to explore the effectiveness of 
fractal parameters comprising Topothesy and fractal dimension 
for the representation of FKP texture using the structure 
function. Topothesy deals with the roughness property 
whereas fractals are self-similar on multiple scales, and have 
a fractional dimension8. Another motivation is to make use 
of the orientation information just as competitive coding by 
devising new features. 
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1.1 Finger Knuckle database
The FKP database used here is taken from Polytechnic 

University, Hong Kong9. This database contains 165 users, 
4 FKPs for each user and 6 images for each FKP, totaling 
3960(165x4x6) images from 660 fingers in the first session. 
The FKPs consisting of left index, left middle, right index and 
right middle of a user are as shown in Figs. 1(a)  - 1(d).

2. FeAture extrActIon
2.1 Gaussian smoothed High Pass response

We have devised a new feature which is the sum of 
the differences of the current pixel intensity and its mxm 
neighbouring pixels. The sum of (mxm-1) differences is given 
by:
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To express the computation in eqn. (1) we define mask w 
for m = 5 as
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Then the computation in eqn. (1) is represented by the 

convolution of the image I(x, y) with the mask given by
( , )*S I x y w=                                                                (2)

where the size of I is M x N, the size of w is m x n, and the size of 
S is (M-(m-1)) x (N-(n-1)).  The above convolution is expressed 
mathematically as,

( , ) ( , ) ( , )
a b

p a q b
s x y w p q I x p y q

=− =−

= + +∑ ∑
a = (m-1)/2 and b = (n-1)/2 for x = 0,1,2,…M-1 and y = 0,1, 
2..N-1. Next s is convolved with the Gaussian function G to give

*fS S G=                                                                      (3)
where G is defined as
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The value of σ  is set to 0.4 after experimentation. The 

size of S is (M-m-1)x(N-n-1) and the size of G is taken as axa. 
The size of Sf is obtained as (M-(m-1)-(a-1))x(N-(n-1)-(a-1)), 
where m = n = 5 and a = 7. Here the size of I is (55x110) and 
the size of Sf  is (55-4-6=45, 110-4-6=100).

The first convolution in eqn. (2) modifies the original 
image into an image of differences and the second convolution 
in eqn. (3) converts these differences into information values, 
which are products of the information source values, i.e. s values 

and the Gaussian membership function values. The concept of 
information set and information values can be found in Mamta 
and Hanmandlu10 and this concept is not explored here.

2.2 Gaussian smoothed oriented derivatives
To compute the horizontal and vertical gradients, we 

perform two 1D convolutions with differentiation kernels 
[-1 1] and [-1 1]T, respectively. The resulting horizontal and 
vertical gradients are denoted by '

xI and '
yI  which are the 

approximations of the horizontal and vertical gradients. The 
overall direction of these two gradients at the location (x, y) is 
computed as

' 'max( cos sin , 0)x yG I Iθ = θ + θ                                    (4)
This gradient image Gθ   is convolved with the Gaussian 

function G in eqn. (3) to yield GSOD denoted by ODG  . The 
GSOD feature representation on FKPs is depicted in Fig. 2 in the 
form of intensity image at orientations of   30º, 60º, 90º, 120º, and 
150º, 180º from left to right and from top to bottom, respectively. 
Thus we have six images corresponding to 6 orientations.

The size of I is (MxN), Gθ  is (M-1)x(N-1) and the size of 
G is taken as axa. The size of ODG  is obtained as (M-1-(a-1))
x(N-1-(a-1)), where a = 7. Here the size of I is (55x110) and 
the size of ODG   is (55-1-6=48, 110-1-6=103).

Figure 2. response of the Gsod in six orientations (30º, 60º, 
90º, 120º, 150º and 180º).

Figure 1.  FKP of (a) Left index, (b) Left middle, (c) right index and (d) right middle.
(a) (b) (c) (d)

2.3 Fractal Parameters
Our focus is on FKP textures which are random 

and irregular. In this work, fractal based approaches are 
investigated for the analysis of finger knuckle print for personal 
authentication. Fractals exhibit self-similarity, i.e. the whole 
structure is approximately similar in shape to its constituent 
parts. The traditional approaches like box-Counting are 
already used for the computation of fractal dimension by 
Chaudhuri and Sarkar11. Fractal profiles to be investigated 
for the representation of FXP texture are not only self similar 
but also self-affine. In such profiles, their self affinity may be 
represented by an additional measure called topothesy12. The 
fractal profiles are characterised by two parameters called 
fractal parameters: Fractal dimension and topothesy. 

2.3.1 The Structure Function
The motivation for the structure function stems from the 
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work of Hanmandlu13, et al. A brief description of structure 
function is in order. The structure function is a measure of the 
frequency variation in a signal caused by the change in the 
roughness and it bears a relation with the fractal parameters. The 
structure function (SF) for a particular 1-D (one dimensional) 
discrete function z(x) and for a particular value of delay τ 
(τϵZ, 1<τ<m), m being the number of data points available, is 
expressed as

1

1( ) ( ) ( )
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S z i z i

m

−τ

=

τ = − + τ
− τ ∑                                       (5)

As the images involve two dimensions τx and τy, the 
structure function in 1-D is changed to 2-D (two dimensional) 
as:
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where the size of the sub image is (mxn). Referring to eqn. (6), 
it may be noted that the change in the intensity values in two 
windows separated by τx=τy=τ gives a measure of roughness 
whereas the change in the intensities over several values of τ 
possess self-similarity. Thus both roughness and self-similarity 
are accounted for in eqn. (6).

As the SF bears a relation with the fractal parameters, we 
will examine its mathematical expression in eqn. (6). The SF 
is also a function of the fractal parameters as given by:

(2 2) 2(2 )( ) D Ds − −τ = Λ τ                                                       (7)

In this study, we estimate the asymptote by the best line fit 
passing through the initial and the end points of the hyperbola. 
The asymptote is evaluated by taking log of eqn. (6) which 
leads to

log ( ) (2 2) log 2(2 ) logs D Dτ = − Λ + − τ
                      (8)

*logIntercept slope= + τ
The y-intercepts and slopes of the two tangents drawn on 

the hyperbola can be used to find the fractal dimension D and 
topothesyɅ from eqn. (8). The first term in eqn. (8) gives the 
property of self-similarity whereas the second term gives the 
property of roughness. Thus D is derived from 

42(2 )
2
slopeslope D as D −

= − =                         (9)

and Ʌ from the intercept = (2D-2)logɅ of the logarithmic plot 
as 

log
(2 2)
Interceptanti

D
 

Λ =  − 
                                             (10)

Knowing the values of both slope and intercept from the 
asymptote, the parameters D and Ʌ can be computed for all the 
windows.

Algorithm for the extraction of Fractal parameters
(a) Slide the subimage of size mxn (taken as 5x5, 6x6 and 

7x7) through the image of size MxN. 
(b) For each sub-image, repeat Steps (c) to (f) until all sub 

images are exhausted. 
(c) Calculate SF as a function of τx and τy using eqn (6), 

for each value of τx, τy ranging from 1 to m-1, n-1 
respectively.

(d) Take the logarithmic of SF for each value of τxy.

(e) Fit a parabola using the points (log(τx,τy), log(S(τx, τy))).
(f)  Draw two tangents to the parabola and use these to find the 

fractal dimension D and Topothesy Ʌ for the sub image 
under consideration as given in eqns. (9) and (10).

(g)  Obtain the topothesy and fractal dimension features 
corresponding to each subimage. 
Note that for each sub image, we obtain a structure function 

from which we compute topothesy and fractal dimension. Thus 
we get two features for each sub image thus leading to two 
feature matrices one for the topothesy and another for fractal 
dimension. These feature matrices are of size: (M-(m-1), 
N-(n-1)) corresponding to FKPs of size MxN and sub image 
of size mxn.

2.4 FKP Matching based on Feature Matrices
In the case of DAISy descriptor the FKP features are 

in the vector form. let Pv and Qv be the two feature vectors 
corresponding to training and test samples respectively. Then 
we use the euclidean distance ( , )v vd P Q  between these two 
feature vectors for matching. 

The computation of GHSP and GSOD involving 
convolution operations is turned out to be feature matrices. 
Also topothesy and fractal dimension features are also in 
matrix form. Hence FKP matching is matrix based. let Pm and 
Qm be two feature matrices corresponding to training and test 
samples, then the matching distance between them is defined 
as:

1 1
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m m
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A
= =

−
=

∑∑
               (11)

where A is the overlapping area of two feature matrices with 
x and y denoting the row and column numbers respectively. 
The possible translation of region of interest (ROI) of FKP has 
been taken into account during matching.

Zhang2, et al. perform multiple matches by translating 
one set of features in both horizontal and vertical directions. 
The minimum matching distance from all the translations is 
considered as the final score. The ranges of horizontal and the 
vertical translations are empirically set as -8 to 8 and -4 to 4, 
respectively.

2.5 the method of refined scores
To match the given query with the claimed identity, Mamta 

and Hanmandlu10 used the information of the neighbours to 
refine the decision of selection or rejection of a user. In the 
conventional case, if the scores are less than the predefined 
threshold, then the user is classified as the genuine, otherwise 
an imposter. because of the corrupted data, there is a decrease 
in the intraclass similarity and an increase in the interclass 
similarity. As a result the genuine and imposter scores are 
overlapped leading to wrong decision. by this, some genuine 
users get falsely rejected (FRR) while some imposters falsely 
accepted (FAR). In such cases, the scores are refined by 
applying rechecks on the error scores. 

 The performance metrics of biometric system are defined 
as follows:

False Acceptance Rate (FAR) is the ratio of the number 
of imposters (unauthorised users) being accepted to the total 
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number of users registered in the system.

Number of imposters falsely acceptedFAR
Number of imposter recognition attempts

=

False Rejection Rate (FRR) is the ratio of the number of 
genuine (authorised users) being rejected to the total number of 
users registered in the system.

Number of genuine falsely rejectedFRR
Number of genuine recognition attempts

=

Genuine Acceptance Rate (GAR) is defined as GAR=1-
FRR.

Equal Error Rate (EER) is the rate at which both FAR and 
FRR are equal.

Receiver Operating Characteristic (ROC) is a plot of 
GAR along the y-axis vs. FAR along the X-axis and it is used 
to evaluate the performance of a biometric system.  

2.6 Improvement of Frrs and FArs
To improve FRR, if a score is more than the threshold (T) 

instead of rejecting it is refined using the cohort information 
provided by the neighbours of the claimed identity. let XQ 
be the query sample and T

ClX be the claimed sample. let 
( ),Q T

Cld ED X X=  be the matching score computed as the 
euclidean distance (ED) between the query sample and the 
claimed sample T

ClX  such that

( ) ,
,

,
Q T

Cl

Gen if d T
ED X X

Im if d T
< 

=  > 
                            (12)

where T is the threshold.  If (d < t) then the matching score 
is claimed as the genuine (Gen) otherwise imposter (Im). For 
example if N is the number of users then we will have only N 
genuine matching scores but N×(N-1) imposter matching scores. 
This means that almost all bins in the knowledge database will 
be occupied by the imposter matching scores, only a small 
proportion is occupied by the genuine matching scores. So 
we utilise the neighbourhood samples of the claimed sample 
to generate the neighbourhood score which is the euclidean 
distance between the query sample and the neighbourhood 
sample. 

 If the matching score is above the threshold then it is 
rechecked with all the neighbourhood scores of the claimed 
score of that user. If any of the neighbourhood score is less 
than the matching score then the claimed user is said to be 
imposter but if the matching score is less than all of the 
neighbourhood scores then the user is authenticated as the 
genuine. The rejection rate of genuine user is reduced thus 
improving FRR. For the improvement of FAR error rates, 
if the matching score is higher than the threshold, we resort 
to rechecking of the matching score to confirm the decision 
of imposter. As part of this rechecking if the matching score 
is greater than all the neighbourhood scores of the claimed 
identity then the user is authenticated as an imposter. On 
the other hand if the matching score is less than any one of 
neighbourhood scores of the claimed identity then the user is 
authenticated as genuine. In this way FAR is improved. The 
whole process by which FARs and FRRs are refined by using 

the neighbourhood information is termed as refined score (RS) 
method.

3. exPerIMentAL resuLts
We have extracted DAISy descriptor of FKP14-15 as given 

in Appendix-A. Mittal16, et al. have utilised the same for the 
authentication of FKP14-15. FKP is first resized to 60x110 pixel 
resolution before applying DAISy descriptor on it. Only 14 
points have been selected with (x=15:30:55) and (y=15:15:110) 
for the Daisy descriptor. The results of this descriptor are given 
in Table 1 for both training to test ratios of 5:1 and 6:6. The 
results are degraded as the number of test samples is increased 
in the latter as expected. The right middle finger gives the best 
genuine acceptance rate (GAR) of 97 per cent for the training 
to test ratios of 5:1 from DAISy descriptor at FAR of 0.01 per 
cent. The scores from individual FKPs are integrated by the 
sum rule giving rise to GARs of 99.5 per cent at FAR of 0.01 
per cent using DAISy descriptor.

table  1. results of dAIsY descriptor (image size [60 110] 
points) per centGAr @ 0.01 per cent FAr

FKP
DAISY DeScrIptor

trAIn:teSt- 5:1 trAIn:teSt–6:6
left index 95.8 64.5
left middle 95.15 71.4
Right index 96.4 68.6
Right middle 97 72.1
Score level fusion FKPs 
(sum rule)

99.5 91.8

Table 2. GSHP (filter size 7x7, σ=0.4,) on FKP per centGAR 
@ 0.01 per cent FAr

FKP GsHP
train:test-5:1 train:test-6:6

left index 98.8 79.2
left middle 97 78.2
Right index 98.8 78.3
Right middle 99.4 85.3
Sum Rule 100 91

Training set is used for learning while the test set is used 
to assess the performance of classifier. Here we have a fixed 
training set but the test set is changed for the evaluation of the 
performance of features.

Results from the GSHP response for all FKPs are shown 
in Table 2, while the results from the GSOD are shown in Table 
3. The filter size is taken as 7x7 and the standard deviation 
as σ = 0.4. Table 4 gives the results of topothesy and fractal 
dimension for the training to test ratio of 6:6.

Figures 3(a) and 3(b), and Figs. 4(a), 4(b) show the 
comparative performance of DAISy descriptor and of GSHP 
on individual FKPs and their fusion at the score level using 
the sum rule for the training to test ratios of 5:1 and 6:6, 
respectively. Figures 5(a) and 5(b) illustrate the Receiver 
operating characteristics (ROCs) of individual FKPs on GSOD 
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features for the training to test ratios of 5:1 and 
6:6. Figures 6(a) and 6(b) exhibit the performance 
of topothesy and fractal dimension without and 
with RS.

4. coMPArIson wItH tHe   
 exIstInG MetHods

Table 5 shows the comparison of results of 
different methods on the basis of  per cent equal 
error rate (eeR) and the number of genuine 
and imposter scores. The results of Compcode, 
ImpCompCode and MagCode on authentication 
of FKPs are taken directly from2. For each type of 
FKPs, each gallery or probe image contains 165 
classes and 990 (165x6) sample images. If we 
take minimum of 6 scores from a test sample and 

6 from a training sample, 990 genuine and 162360 (165x164x6) 
imposter matching scores are obtained. The actual numbers of 
genuine and imposter matching scores are 5940(165x6x6) and 
974160(165x164x6x6) respectively. The results due to fractal 
parameters are the best when we use less number of genuine 
and imposer scores, i.e. 990 and 162360 for the image size of 
0.5.  On the other hand the results deteriorate with 5940 scores 

Figure 3.  rocs of dAIsY descriptor on individual FKPs and their fusion at score level using sum rule with training to  test ratio 
(5:1), (6:6).

Table 3.  Results from GSOD (filter size 7x7, σ = 0.4) on FKP  
per centGAr @ 0.01 per cent FAr

Gsod
orientation train:test-5:1 train:test-6:6

Left 
index

Left 
middle

right 
index

right 
middle

Left 
index

Left 
middle

right 
index

right 
middle

π/6 98.2 96.9 97.5 99.4 59.3 74.3 66.3 73.8
2π/6 96.9 96.9 96.9 100 64.1 72.1 61.5 66.6
3π/6 96.9 95.7 98.7 99.8 55.3 61.8 59 61.8
4π/6 96.3 96.9 98.8 99.4 61 66 62 71.6
5π/6 96.9 97.1 99.4 100 61.4 74.3 67.1 74.3
Π 96.9 96.5 98.2 98.7 63 72.5 67 77.5
Sum rule 97.5 98.2 99 100 68.2 77.4 72.5 77.4

window 
size

Left 
index

Left 
middle

right 
index

right 
middle

5x5 86.2 90.8 87.8 92.8
6x6 85.8 90.8 88.3 92.1
7x7 82.5 89.8 88.5 90.4

table 4.  results of fractal dimension and topothesy (6:6)  per 
centGAr @ 0.01 per cent FAr

Figure 4. rocs of GsHP on the individual FKPs and their fusion at score level using sum rule with training to test ratio (5:1, 
6:6).
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with this image size. However by reducing the image size to 
0.35 but keeping the same number of scores the results are 
improved and the feature dimension is reduced.  These results 
are comparable to those due to CompCode, ImpCompCode 
and MagCode reported in the literature2 on the basis of number 
of genuine and imposter scores.

5. concLusIons
In this work the FKP based authentication is presented. 

Two new features called GSHP and GSOD are implemented 
on FKPs. The existing DAISy descriptor, topothesy and 
fractal dimension together called fractal parameters are also 

implemented on FKPs. The fractal parameters along with the 
refined scores provide the best results among all the methods 
implemented in this paper. The superior performance of 
fractal parameters is due to their ability to represent the 
texture effectively.  Our results of FKP based authentication 
by fractal parameters are found to be comparable to those 
in the literature obtained using CompCode, ImpCompCode 
and MagCode.  Thus the applicability of fractal parameters 
to the representation of the texture of FKPs is demonstrated 
and is a significant contribution of this paper. Further work 
is to extend GSHP features in the framework information set 
theory.

table 5.  eers (per cent) by different methods (6:6)

compcode 
(Zhang2, et 

al.)

Impcompcode and 
Magcode

(Zhang2, et al.)

(topothesy + fractal dimension) rs based score 
level fusion window size 5x5 pixels

Image size 0.5 Image size 0.5 Image size 0.35
Number of genuine and imposter scores 5940, 487080 5940, 487080 990, 162360 5940, 974160 5940, 974160
left index 2.06 1.73 0.46 4.68 3.47
left middle 1.96 1.78 0.46 2.81 2.36
Right index 1.82 1.44 1.07 4.59 3.2
Right middle 1.87 1.64 0.93 3.68 2.85

Figure 6.  rocs of topothesy and fractal dimension on the individual FKPs training to test ratio  6:6((a)without and (b)with rs).

Figure 5.  rocs of Gsod on the individual FKPs with training to test ratio ((a) 5:1, (b) 6:6).
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dAIsY descriptor
This descriptor due to Tola14,15, et al. is used to extract 

daisy features from palmprints.  An image may belong to any 
one of four spectral bands. For a given input image I, eight 
orientation maps Gi are computed, one for each quantised 
direction. If direction is greater than zero Go(u, v) equals the 
image gradient norm at location (u, v) , else it is zero. The maps 
that preserve polarity of the intensity changes are defined as 

o
IG
o

+∂ =  ∂                                                                  
(A.1)

where (.)+ is the operator such that (a)+ = max(a,0).  The 
convolved orientation maps are obtained by convolving 
orientation maps with the Gaussian kernels G∑  for various ∑.
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For instance, 2
oGΣ  can be computed with ∑2 > ∑1 as
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For an input image I, the convolution of the orientation 
maps is shown in Fig. A1(a). DAISy descriptor at a particular 
pixel consists of the convolved orientation maps located on the 
concentric circles and the radii of the circles and the amount 
of Gaussian smoothing are proportional to each other. As this 
descriptor appears like a flower, it is named as Daisy shown in 
Fig. A1(b).

let h∑(u,v) be the vector consisting of convolved 
orientation maps at location (u, v) where ∑ is the standard 
deviation. It is denoted by 

1 8( , ) [ ( , ),.., ( , )]Th u v G u v G u vΣ Σ
Σ =                                (A.4)

where 1 2,G GΣ Σ and 8GΣ are the convolved orientation maps 
in 8 different directions. This vector is normalised to unit 
norm denoted by ( , )h u vΣ

 . each histogram is normalised 
independently. The DAISy descriptor D(uo,vo) for three 

circular layers, Q = 3 at location (uo,vo) consists of  the following 
concatenated h  vectors:     
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where Ij (u, v, R) is location in the direction j with distance R 
from pixel (u, v).  Here 8 directions and 3 concentric circles so 
the descriptor contains 8+8x3x8=200 values from 25 locations 
and 8 orientations have been used.

This descriptor is also resistant to rotational variations 
because it is constructed from an isotropic Gaussian kernel 
merged with a circular grid. The overlapping regions ensure 
a smoothly changing descriptor along the rotation axis and it 
can be made more robust up to the point where the descriptor 
starts losing its discriminative power on increasing the overlap. 
The daisy descriptor calculated from palmprint is shown in  
Fig. A2.

Figure A2.  daisy descriptor calculated from palmprint.

Figure A1.  (a) the computation of the orientation maps of given image and the convolution of the orientation maps. (b) daisy 
descriptor: the radius of each circle is proportional to the standard deviation of the Gaussian kernel.

(a) (b)
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