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1. IntroductIon
Vision system has become an integral part of military 

applications, as in autonomous vehicles, where vision sensors 
are deployed for missions like surveillance, tracking etc. In 
particular, autonomous operation of unmanned air vehicles 
(UAVs) has progressively developed in recent years wherein, 
vision-based navigation, guidance and control has been the 
most focused research interest for trajectory tracking, path 
planning, obstacle avoidance, target localisation, target 
recognition, border and ground surveillance.

Although intelligence, surveillance, and reconnaissance 
missions still remain the predominant tasks of UAVs, their 
roles have expanded to diverse civilian, federal and commercial 
areas including law enforcement, environment monitoring, 
network connection and communication relay. The increased 
use of UAV in various complex missions has motivated the 
need to increase the autonomous capabilities of the vehicle. 
Hence, for future UAVs, computer vision forms an integral 
part of both advanced intelligent flight control techniques as 
well as autonomous vehicle mission planning.

Object tracking is a fundamental task in a wide range of 
military and civilian applications, namely surveillance, traffic 
monitoring and management, security and defense. In aerial 
imagery applications, the camera system is mounted on a 
moving aerial platform. As a consequence, the camera is not 
stabilised, and the acquired video sequences undergo a random 
global motion, that prevents the use of the object dynamics to 
predict the object location.

2. related Work
Object tracking involves following an object through a 

sequence of frames. The challenges involved in this include 
handling partial and complete occlusions of the object in 
some frames, multiple objects moving close to each other, 
crisscrossing each other etc.1,2. Tracking an object of interest 
by drawing inferences from the surrounding objects in motion 
is an area that  needs to be researched upon. The main focus 
of the research is to develop a tracker that is robust enough to 
handle the scene adversaries and perform accurately in aerial 
image sequences. 

Initial study showed the existence of three main techniques 
for object tracking, namely, point based, kernel based and 
silhouette based tracking3. A system for tracking moving 
objects in aerial images sequences taken from a moving 
camera consists of motion compensation module, motion 
detection followed by the tracking module. The basic tracking 
framework is given by Ali4, et al., where object of interest is 
tracked in UAV images using optimisation technique for blob 
tracking. However, today, learning based tracking by detection 
algorithms have become popular which combine detection and 
tracking in one framework. 

Salti5, et al., evaluated a number of appearance adaptive 
trackers prominent among them being boost tracker6, semi-
boost tracker7, beyond semi-boost tracker8, incremental visual 
tracker (IVT)9, MIL-boost tracker10, track learn detect (TLD)11 
and STRUCK12. 

The authors propose a unified framework and evaluation 
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technique for the adaptive trackers and prove that learning 
based approach is superior to their non-learning counterparts. 
Out of all the successful trackers, STRUCK and TLD 
outperform others followed by IVT and MILBOOST in the 
cases of both partial and complete occlusions. After rigorous 
experimentation, we concluded that TLD works well on aerial 
images when compared to other algorithms. However, many 
failure cases were detected as will be explained in detail in 
the subsequent sections. Hence ATLD is towards improvising 
the TLD algorithm to suit target tracking in aerial image 
sequences.

3. trackIng learnIng detectIon 
Tracking learning detection is an algorithm11,13 based on 

learning and can be used to track a chosen object of interest 
in a video stream. TLD method uses patches found on the 
trajectory of an optic-flow-based tracker to train an object 
detector. Updates are performed only if the discovered patch is 
similar to the initial patch. The output of the object detector is 
used only to reinitialize the optic-flow-based tracker in case of 
failure but is never used in order to update the classifier itself. 

The tracker in TLD calculates the motion of the object 
between two consecutive frames assuming that frame-to-
frame motion is limited and the object does not move out of 
the camera view. The initialisation is accomplished by manual 
intervention. An equally spaced set of points is formed in the 
bounding box. Optical flow of each of these points is calculated 
using Lucas - Kanade tracker14. Erroneous points are filtered out 
based on normalised cross correlation and forward-backward 
error measure. The tracker is likely to fail without recovering, 
if the object of interest moves out of the camera view. 

Detector treats each frame independently, performs 
scanning of the entire image and localises all appearances that 
have been observed and learned in the past. It is a cascade of 
3 stages. Only if a sub-window is accepted by one stage in 
the cascade, the next stage is evaluated. In the first stage, all 
sub-windows, that exhibit a variance lower than a threshold, 
are rejected. Second stage comprises of an ensemble classifier 
based on random ferns. The third stage consists of a template 
matching method that is based on the normalised correlation 
coefficient as a similarity measure. 

Learning observes the errors of both tracker and detector, 
estimates detector’s errors and generates positive and negative 
training examples to avoid these errors in the future. By the 

virtue of the learning, the detector generalises to more object 
appearances and discriminates against background. The 
Integrator combines the outputs of tracker and detector to give 
the final output. It also decides whether an output patch is good 
enough to be considered as a positive example for learning.    

 However, various challenges arise during object tracking 
in aerial images using TLD. Changes in pose, scale and 
illumination, partial and complete occlusion, similar objects 
moving close to each other, moving object coming to a halt, 
random jitter in image and noise are the major observations. 
These observations are tabulated in Table 1 along with the code 
level and algorithm level modifications as their solution.

4.  atld – aerIal - tld for trackIng 
objectS In aerIal IMage SequenceS
Based on the above observations, the TLD algorithm is 

modified and enhanced so as to overcome the problems and 
is called ATLD. This learning based tracker is represented in 
Fig. 1.

Table 1.  Problem area, modifications and extensions to tracking learning detection

Problem areas of tld on aerial 
image sequences

Solution suggested Implementation details Handles

Motion of the camera introduces 
jitter and noise

Motion compensation As a pre-processing module 
to the tracking module

Jitter, noise

Bounding box latching to occluder Linear projection model Introduced in the integrator Partial/Complete occlusions, shadow, 
Criss-crossing of objects

Similar objects in the vicinity of the 
object of interest

Considering motion confidence 
along with detector confidence

Introduced in the integrator Similar object in the vicinity, criss-
crossing of objects

Only single object tracking Extended to multi-object 
tracking

Using multithreads Multiple object tracking

Accuracy in complex scenarios Distance cue Introduced as an algorithmic 
extension

Single object tracking in multi-object 
tracking environment

figure 1. a learning based tracker.

4.1 Motion of the camera
It is observed that TLD does not explicitly handle motion 

of the camera as the algorithm assumes that the appearance 
of the object doesn’t change much. Aerial images taken from 
the camera mounted on platforms like UAV however introduce 
lot of noise, jitter and scale, pose and illumination changes. 
Therefore motion compensation module is incorporated as a 
pre-processing step to remove the effect of camera motion. 
Motion compensation is realised using image registration.

In ATLD, image registration is performed by considering 
a reference image and extracting the SIFT features17. The 
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features thus detected are matched with the features detected 
in n subsequent images and a correspondence is established. 
The outliers are then filtered using RANSAC to find the 
correspondences that best fit a homography. Introducing 
motion compensation thus helped in mapping the images, 
and eliminating the problems of noise, scale and illumination 
changes.

4.2  Bounding Box Latching on to the Occluder
The motion compensated image sequence is tested for 

its capability of handling occlusions using TLD. Though TLD 
succeeded, there are frequent instances when the selected 
bounding box of the object of interest gets latched on to the 
occluder and remains there. This is because there is more than 
one output at the detector having similar confidence value. 

As a solution to this, along with detector confidence, the 
motion confidence value is considered to decide on the final 
patch. A Kalman like linear projection model15,16 is incorporated 
to remove the ambiguities when there are more than one detector 
outputs. Similarly, the tracker output is tested for appearance 
confidence before it is accepted as the final output which has 
improved the result of tracking and eventually the number of 
wrong patches learned is reduced considerably. 

This also serves the purpose when the object selected 
goes out of frame for certain period of time and reappears; the 
tracker is able to track the object correctly. This is as a result 
of ATLD not restricting the search of the tracker to faraway 
objects.

4.3 Similar objects in the Vicinity
The tracker is confused with neighbouring moving objects 

having similar detector confidence and motion confidence 
values as that of the object of interest. Under such circumstances 
too, the linear projection model helps in finding the right patch 
and the hence the tracking accuracy is greatly improved.

4.4 Multi-object tracking
Tracking learning detection algorithm is basically designed 

to track a single object of interest. The ATLD is extended 
to multi-object tracking successfully using the concept of 
multithreading. Here the objects of interest are selected using 
a bounding box each and then the algorithm runs on each of 
these selected objects to give multiple tracks. The ATLD with 
this capability works well both for single object tracking as 
well as multi-object tracking. As expected, time complexity is 
affected. However, in order not to compromise on real time 
performance, we chose to track three moving objects in the 
scene successfully. Experiments have shown improved results 
on various aerial datasets. The test datasets included the 
proprietary UAV video sequences with different complexities 
like, camera motion, scale changes and illumination changes.  
ATLD algorithm is incorporated in the integrator part of the 
TLD framework.

4.5 Tracker Precision and Accuracy in Complex 
Scenarios
Analysis of the tracker and detector confidence values 

in the debug environment show that when there is no tracker 

output and the detector detects one or more qualified patch/s, 
the algorithm may chose the wrong patch as the target looking 
at the confidence value derived from appearance match. In such 
cases ATLD has the capability to choose the final match based 
on the distance measure which serves as an additional cue 
along with their appearance and motion confidence values. As 
depicted in Figs. 2 and 3, the algorithm measures the distance 
between the qualified patches of the object of interest and 
qualified patches of the other moving objects nearby, and maps 
the object of interest in frame (n-1) with the patch in frame n 
that has the minimum distance measure with ∆ as the error. The 
detailed algorithm for tracking object of interest amongst other 
moving objects using ATLD is represented below.

figure 3. distance cue between frame n and (n-1).

 algorithm: aerial tracking learning and detection

Input: Image Sequence 
Output: Object tracks
Terminology: bb - bounding box, dtconf – detector 

confidence, trconf – tracker confidence, tr – tracker output, 
   dt – detector output

1.  Pre-process input images for camera motion. 
2.  For n moving objects (here n=3) in each frame
     a. If tr=1 and the trconf measure is sufficiently high 

           Find all dt away from tracker && having higher  
                    confidence measure than trop

      If # of such dt = = 1    
           Get the motion confidence (M) of that bb
          If M is greater than a threshold
             Assign it to op
          End
       Else If # of such dt > 1    
           Adjust tr  ie, consider the dt around tr && find the  

                   mean of the b of these ops and give it as op. 
       End

figure 2. Minimum distance measure between the objects of 
frame n and (n-1).

Frame (n-1)           D=(p-a)          Frame n
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  End
     b. If (tr=1) and (dt=0)

      Output of the tracker is the required output
 End

   c. If (tr=0)    /* No output from tracker*/
i.  Get all the patches which pass through fern classifier 
ii. Compute dtconf (D) for these clusters.
iii. Compute M for all these patches 
iv. Retain those patches which have M greater than 

threshold.
v.  For all qualified patches of n moving objects

                  Calculate the distance between qualified patches for the  
            object of interest with all qualified patches of all other  
        objects. Final Patch for the object of interest = Min  
            ((distance between object of interest and other objects   
            in frame (n-1) ) -  (distance between qualified patches  
             of object of  interest and other objects in frame (n)))

     End
End

   d.  If tr=0 and dt=0 then
Reinitialise the tracker
End

3.  Repeat steps 1 and 2 for subsequent images.
This algorithm is verified and tested on different aerial 

sequences to establish the effectiveness of the same. 

5. reSultS and dIScuSSIon
Experimental setup consisted of an environment 

to run original TLD as given by Kalal13, et al., and its 
enhancements in the form of ATLD. A debug environment 
is created to study the cause and effect of the algorithm on 
the input sequence. ATLD worked well and gave better 
results on the test datasets as supported by the quantitative 
analysis. The test datasets includes classified UAV video 
sequences,  aerial sequences from UCF website (http://crcv.
ucf.edu/data/UCF_Aerial_Action.php), benchmark sequences  
(http://i21www.ira.uka.de/image_sequences/), TLD dataset 
(http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/dataset) and 
few in-house aerial sequences and a large number of classified 
data sequences. All simulations are carried out in MATLAB 
version R2013b with associated image processing toolkit on 
an i7 processor with processing capacity of 6 gB RAM and 
500 gB hard disk. 

5.1 Motion compensation
Motion compensation module is incorporated as a pre-

processing step to remove the effect of camera motion, thus 
eliminating noise in the form of jitter. Image registration using 
SIFT features extraction and matching17 is performed to find 
the correspondences that best fit a homography. Figure 4 shows 
a sample result on an aerial image sequence.

figure 5.  biker sequence.

figure 4.  a panoramic image registered by uaV video image 
sequence.

5.2 Single object tracking using tld
The working of TLD algorithm on aerial image sequences 

is tested on the tabulated dataset. Though the algorithm 
performed well in simple cases, it failed in complex scenarios 
having the effects of illumination changes, occlusions or 
background clutter as aerial images are characterised by low 
resolution and noise. One such scenario where TLD failed due 
to presence of shadow is shown below. The same sequence, 
worked well using ATLD as implementing linear projection 
model along with motion confidence in the integrator helped 
in resolving the problem. 

Figures 5(a) - 5(e) shows the tracking results using l 
TLD and Figs. 5(f) - 5(j) shows the tracking results of ATLD 
algorithm. Figures 5(c) and 5(d) shows failed tracker in frame 
1368 and further fails in recovering as shown in frame 1465, 
However, ATLD accurately tracks the object of interest in all 
these frames.

5.3 Handling Illumination changes
The other issue that is addressed in ATLD is that of sudden 

illumination changes. Here too, implementing linear projection 
model along with motion confidence in the detector, helped 
in resolving the problem. Output of UAV1 sequence is as 
shown in the frames Fig. 6. The object of interest in red color 
bounding box is track correctly using ATLD, though there was 
large illumination change in these frames.

5.4 object appearance and disappearance
The case wherein the object of interest leaves the frame 

(a) (b)

(f) (g) (h)

(c) (d) (e)

(j)(i)

Frame 1   Frame 310   Frame 1336   Frame 1368   Frame 1465
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and reappears in later frames is depicted in frames A-F. ATLD 
successfully tracks such objects, as the detector confidence is 
high for those objects which have been learnt and reappear at a 
later stage after disappearing from the scene.

Figure 7 show as the object is selected manually in 
A (Frame 70). The object disappears in B-D (frame 104,  
frame117, frame 143) The object reappears in frames E–F 
(frame 157, frame 186) and is tracked successfully.

5.5 tracker tracking Similar object in the Vicinity
Appearance matching may fail, as the detector may not 

give a single high detector confidence value when there are 
similar objects in the vicinity of the object of interest. One such 
case is as shown below where the bounding box latches on to 
similar looking vehicle passing near the object of interest. In 
case of ATLD, this problem is overcome as along with detector 

confidence, motion confidence is considered together with 
linear projection to give accurate results.

As shown in Fig. 8,  the first row show the tracking results 
of TLD and the images in the second row show the tracking 
results of ATLD algorithm. First frame in both the rows show 
the bounding box around the same object selected for tracking. 
The third, fourth and fifth images in the first row show that 
TLD gives wrong track results in frame 27, frame 79, and 
frame 92, respectively whereas ATLD successfully tracks the 
object of interest.

5.6  Multi-target tracking
ATLD on single object tracking is further extended to 

tracking multiple objects using multithread processing but 
with time complexity being affected.  Realtime performance 
was not compromised with three moving objects being tracked 

figure 6.  uaV1 sequence: Handling illumination changes.

figure 7. uaV1 sequence: object appearance and disappearance.

(A) (B) (C)

(F)(E)(D)

(D)

(A)

(E)

(B)

(F)

(C)
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in the scene. Few results are depicted as shown in Fig. 9.

5.7 tracking object of Interest with distance cue 
from Surrounding Moving objects
Experimentation with ATLD tracker shows that the 

algorithm failed in certain scenarios where the motion and 
appearance confidence values of two or more objects become 
similar. One such example is as shown below in Fig. 10. 
Additional cue however, can help in resolving the issue of 
similar confidence values. Here distance of the object of interest 

and its surrounding moving objects is considered which brings 
in noticeable changes to the output as seen below.

 
5.8 quantitative analysis

ATLD thus shows satisfactory results on the different 
aerial datasets. Along with the relevant TLD dataset sequences, 
we tested the accuracy of the proposed algorithm on various 
proprietary UAV datasets which gave an insight to the working 
of TLD and ATLD that helped in bringing out comparisons 
between the two. All sequences were manually annotated and 
more than 60 per cent occlusion was annotated as ‘non-visible’. 
The performance of the system is evaluated based on precision, 
recall and F-measure factors. 

The precision-factor is a measure of the true positives (tp) 
of all the bounding boxes detected i.e. from all of true positives 
(tp) and false positives (fp) detected. It is given by Eqn. (1) as

( ) tpprecision factor P
tp fp

− =
+∑                              (1)

The recall-factor on the other hand considers the false 
negatives (fn) or the missed bounding boxes as shown in Eqn. 
(2). Ideally, no true positive should be missed.

( ) tprecall factor R
tp fn

− =
+∑                                    (2)

A perfect precision-factor of 1.0 means that the object of 
interest is detected correctly, but it doesn’t say anything about 
whether all true positives were detected. Similarly, a perfect 
recall-factor of 1.0 means all true positives were detected, but 
doesn’t say anything about how many remaining objects were 
classified incorrectly. F-measure gives the harmonic mean of 
the two.

Figure 8.  Traffic sequence.

figure 9.  Snapshots of multi-object tracking in selected aerial datasets.

figure 10. (a) frame 24 – tracking object of interest (middle 
taxi) failed and (b) Frame 24 - The object of interest 
is tracked accurately with distance measure cue.

(a)

(b)
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( * )2*
( )
P RF measure
P R

− =
+

                                            (3)

Table 2 shows the performance measured using P/R/F-
measure values. The results of ATLD outperformed original 
TLD in almost all the datasets chosen. Thus ATLD performs 
better in comparison with other benchmark learning based 
algorithms that have been compared by the authors of TLD. 
As observed, the biker sequence and car chase sequence show 
drastic improvement in their recall values using ATLD. This is 
because the algorithm successfully tracks the object of interest 
in presence of shadow, occlusion and reappearance of the 
object while TLD fails (the bounding box stuck to the occluder 
in case of occlusion).

in the same direction. However there are cases, especially the 
ones with severe occlusions (> 60 per cent) and the ones in 
which surrounding objects do not move in the same direction, 
the algorithm tend to fail and hence are further being researched 
upon.

6. concluSIon 
An enhancement to the popular TLD algorithm for 

aerial image sequences called aerial TLD is proposed. 
The various challenges that arise during object 
tracking in aerial image sequences like scale and illumination 
changes, partial and complete occlusion, similar objects moving 
close to each other, moving object coming to a halt, random 
jitter and noise have been taken care. Also TLD algorithm 
which basically is designed to track single objects is enhanced 
to track multiple objects.  

Further, in the framework of multi-object tracking using 
ATLD, the object of interest is tracked successfully taking cues 
from the surrounding moving objects. Results demonstrate 
the improved accuracy when compared to the state-of-the-
art. However, the present work utilises distance cues from 
the movement of neighboring objects in the scene under the 
assumption that inter object distance do not vary much and all 
the objects move in the same direction. So the future work will 
look into overcoming these limitations and also automatically 
selecting the neighbours in the scene.  
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