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1.  IntroductIon 
Functionally-graded material (FGM) plate structures 

resting on elastic foundation are extensively useful in many 
engineering applications. Due to smooth distribution of 
material constituents, there is no abrupt change of stresses. 
These structural components like plates supported on an elastic 
foundation often find applications in the construction of nuclear, 
mechanical, aerospace, and civil engineering structures. These 
FGM plates can be subjected to external in plane periodic 
excitations, which may cause parametric resonance. Parametric 
excitations refer to vibrational motion in a mechanical system 
due to periodic load that is parametric to the deformation of 
the system. The response of the system is perpendicular to the 
direction of external excitation. Parametric instability occurs 
when the external excitation is equal to as integral multiple 
of any of the natural frequencies of the system, the system is 
said to undergo parametric resonance. In parametric resonance, 
systems amplitude increases exponentially and may propagate 
without bound. This exponential increase of amplitude is 
potentially dangerous to the structure. Parametric resonance 
is also known as parametric instability or dynamic instability. 
The problem of dynamic stability in various structures was 
studied by Bolotin2.

The bending, vibration, and buckling analysis of isotropic 
plates on various types of elastic foundations have attracted 
the attention of many researchers. Geoige and Voyiadjis3 
investigated the refined theory for bending of moderately-
thick plates on elastic foundations. This theory includes the 

transverse normal strain effect in addition to the transverse 
shear and normal stress effects. The bending problem of  
rectangular  plates  with  free  edges  on  elastic  foundations  
using  Galerkin’s  variational method was presented by Cheng 
Xiang-sheng4.  Ramesh and Sekhar5 studied the behaviour 
of flexible rectangular plates resting on tensionless elastic 
foundations by finite-element method (FEM). Lucia and 
Paolo6 developed finite element method for static analysis of 
functionally-graded Reissner–Mindlin plate. Canonical exact 
solutions using Green’s functions approach was presented 
by Lam7, et al.  to study the bending, buckling and vibration 
analyses of levy-plates on two-parameter elastic foundations. 

Shen8, et al.  have presented free and forced vibrations 
analyses of Reissner-Mindlin plates with free edges resting on 
a Pasternak-type elastic foundation. Their approach was based 
on Reissner-Mindlin first-order shear deformation plate theory 
and included the plate foundation interaction and thermal 
effects. Jha9, et al.  proposed the free vibration analysis of FGM 
plates with higher-order and normal shear deformation theory. 
Malekzadeh10 used the three dimensional elasticity theories to 
study the free-vibration analysis of FG plates resting on elastic 
foundations and with simply-supported boundary conditions. 
Thai11, et al. have proposed a refined shear deformation 
theory for bending, buckling, and vibration of plates on elastic 
foundation. This theory was based on the assumption that 
the in-plane and transverse displacements consist of bending 
and shear components. In addition, it did not require any 
shear correction factor. Mehdi and Gholam12 investigated 
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a coupled FE-DQ method for buckling and free vibration 
analyses of thick plate resting on elastic foundation. Here the 
proposed method benefits the ability of FEM in modelling of 
complicated geometry, and at the same time, advantages of the 
simplicity and accuracy of DQM. Ozdemir13 developed a new 
fourth-order finite element for thick plates resting on a Winkler 
foundation, the element was free from shear-locking problem. 
This new fourth-order finite element gave excellent results for 
static and dynamic analyses. Ramu and Mohanty14, 15 studied 
the buckling and free vibration of FGM thin plates using finite 
element method. Efraim and Eisenberger16 presented free 
vibration analysis of annular FGM plates. 

Kumar17 studied a differential transform method (DTM) 
for free transverse vibration of isotropic rectangular plates 
resting on a Winkler foundation. Jahromi18, et al. have studied 
the generalised differential quadrature method for free vibration 
analysis of moderately-thick plates resting on Pasternak 
foundation. an exact solution for free vibration analysis of 
simply supported rectangular plates on elastic foundation 
has been presented by Dehghany and Farajpour19 employing 
the three dimensional elasticity theory. Seyedemad20, et al.  
investigated a novel mathematical approach for free vibration 
of thin rectangular plates on Winkler and Pasternak elastic 
foundation. Here, closed-form solutions were developed 
through solving the governing differential equations of motion 
of plates. Few papers have reported the dynamic stability of 
plates on elastic foundation. Patel21, et al.  investigated the 
dynamic instability of laminated composite plates supported 
on elastic foundations, subjected to periodic in-plane loads 
using C1 eight-noded shear-flexible plate element. Recent 
research on vibration and buckling analysis, focuses on the 
functionally-graded material structures. Hiroyuki22 examined 
the two-dimensional higher-order theory for natural frequencies 
and buckling stresses of thick elastic plates resting on elastic 
foundations. a study of the literature reveals the existence of 
virtuous researches on buckling and free vibration analyses of 
FGM plates supported on elastic foundation. Sheikholeslami 
and Saidi23 used higher-order shear and normal deformable 
plate theory for free-vibration analysis of FG rectangular plate 
resting on two-parameter elastic foundation.  Baferani1 et al. 
developed an accurate solution for free vibration analysis 
of functionally-graded thick rectangular plates resting on 
two parameter elastic foundation. Buckling analysis of thick 
FG plate was studied by Thai and Kim24  using closed-form 
solution. 

In the present work the dynamic stability of a FGM plate 
supported on Winkler and Pasternak foundations has been 
investigated. a four-noded rectangular finite element with five 
degrees of freedom per node has been adopted to model the 
plate. Finite element method in conjunction with Hamilton’s 
principle has been used to establish the governing equation. 
Third-order shear deformation theory has been considered 
for theoretical formulation in the analysis. Floquet’s theory 
has been used to establish the stability boundaries. Effects of 
different system parameters like foundation elastic constants, 
thickness ratio and power law index etc. on the frequencies 
and dynamic stability behaviour of the FGM plate have been 
investigated.  

2.  MAthEMAtIcAl ForMulAtIon 
The FGM plate of length L, width B, and thickness 

h, resting on elastic foundation and subjected to in-plane 
dynamic load is shown in Fig. 1. The plate is assumed to be 
subjected to biaxial in-plane dynamic loading represented as

( ) coss tP t P P t= + W . Ps, Pt  where are the static and dynamic 
load components, respectively and W is the dynamic load 
component excitation frequency.

Figure 1. (a) FGM plate resting on elastic foundation and (b) 
Geometry of the FGM plate.

assuming power law distribution in the thickness 
direction, the volume fraction of ceramic constituent may be 
written as

1
2

k

c
zV
h

 = + 
 

                                                                  (1)

where z varies from metal surface -h/2 to ceramic surface 
+h/2. 

The material property as a function of temperature is 
given as

( ) ( )1 2 3
0 1 1 2 31P T P P T PT P T PT−

−= + + + +                (2)

where P0, P−1, P2, and P3 are the coefficients of temperature T 
in Kelvin and are unique to each constituent. 

( )0T T T z= + , where T(z) is temperature rise through the 
thickness direction and T0 is room temperature. 

Based on the volume fraction of the constituent materials, 
the effective material properties such as young’s modulus ( )E z , 
Poison’s ratio ( )zυ , mass density ( )zρ , and the coefficient of 
thermal expansion ( )zψ of the temperature-dependent material 

(a) 

(b) 
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properties are obtained using the following expressions:
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The temperature field is applied in the thickness direction 
only and the temperature field is assumed to be constant in the 
Xy –plane of the plate for this analysis.

2.1 Physical neutral Surface of the FGM Plate
For this analysis, the neutral plane concept has been 

employed. The FGM plate neutral plane does not coincide with 
the geometrical mid-plane due to the variation of the material 
properties along the thickness. The distance of the neutral 
surface (d) from the geometric mid-surface is expressed as
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2.2 constitutive relations
The displacements u, v and w at a point from the neutral 

surface of the plate can be expressed as 
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where nu , nv , nw , xθ and yθ  are functions of x, y, and t (time). 
nu , nv and nw denote the displacements of a point on the neutral 

surface of the plate. xθ  and yθ  are the rotations of transverse 
normal about the y and x axes, respectively.

The general strain-displacement relations for small 
deformation are defined as 
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The stress-strain constituent relations of the FGM plate 
are represents as 
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2.3  nonlinear temperature distribution 
The temperature rise through the thickness direction can 

be expressed as
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2.4 Finite Element Analysis   
a four-noded rectangular plate element is considered for 

modal analysis of the FGM plate in thermal environment.The 
rectangular plate element has one node at each corner and five 
degrees of freedom per node.The in-plane displacements are 
u, v, and w is the transverse displacement, and  represents the 
rotations of x and y normals.  

4 4 4 4 4
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The element stiffness matrix are derived as
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The element mass matrix is derived considering 
translational and rotational kinetic energies and is given as

[ ] [ ] [ ] [ ]T Te

v

M N N dv I N N dxdy= ρ +∫ ∫ ∫                   (11)

The element geometric stiffness matrix is derived 
considering work done by the in-plane load and is expressed 
as

2
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e
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The element thermal stiffness matrix is derived considering 
the work done by thermal load and is given as
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The Pasternak foundation element stiffness matrix e
FK is 

derived from the potential energy e
FU of the foundation 
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where e
wk  and e

sk are the Winkler’s foundation and shear layer 
element stiffness matrix, respectively. 

3.  GoVErnInG EquAtIon oF MotIon
The equation of motion of the plate on elastic foundation 

in global matrix form can be expressed as

[ ]{ } { } ( ) { } 0ef gM q K q P t K q   + − =                       (17)

where M, Kef, Kg are global mass, effective elastic stiffness, and 
geometric stiffness matrices, respectively and [q] is the global 
displacement vector.

The Eqn (18) represents a system of differential equations 
with periodic coefficients of Mathieu-hill type.The regions of 
instability can be developed from Floquet’s theory, which solve 
for the existence of periodic solutions of periods T and 2T.

For practical importance the condition for existence 
(Ω=2ω) of these boundary solutions with period 2T can be 
achieved in theform of the trigonometric series:

( ) { } { }
1,3,..

sin cos
2 2b b

b

b t b tq t c d
∝

=

W W = +  
∑

  
                          (18)

Equating the coefficients of the sine and cosine terms 
leads to a series of algebraic equations for the vectors {cb} and 
{db}in the determination of instability regions. a sufficiently 
close approximation of the infinite eigen value problem 
is obtained by taking b=1 in the expansion in Eqn (19).The 
instability boundaries are obtained, putting the determinant of 
the coefficient matrices of the first-order equal to zero. 

Hence, the condition for existence of these boundary 
solutions with period 2T is given by

( ) [ ]
2

/ 2 0
4ef cr gK P K MW   − α ± b − =   

  
                                        (19)

4.  rESultS And dIScuSSIonS 
4.1 Validation 

In this section, the validation of the present method is 
established using available results in the literature for fully 
simply-supported FGM plates. For a square FGM (Al/Al2O3) 
plate, the natural frequency parameter ( ϖ ) values from the 
present work are compared with those of Baferani1, et al., and 
are listed in Table 1. It can be concluded that a good agreement 
exits between the results. 

4.2 Free Vibration and buckling Analyses
The FGM (SUS304/Al2O3) plate composed of steel (as 

metal) and alumina (as ceramic) on elastic foundation is 
considered. The side and thickness of square FGM plate are L 
= 1 and h = 0.05 m, and the Winkler and shear layer constants 
are kw= 50 and ks = 50, respectively. Figure 2 illustrate the 
effect of temperature rise on the first two dimensionless 
natural frequencies of simply-supported FGM plate on 
elastic foundation for nonlinear temperature environment. It 
was observed that the first-and second-mode dimensionless 
natural frequencies have decreasing tendency with increase in 
temperature. a distinct decrease was observed for increase in 
index value k = 1, 2, and 5.  

Figure 2. dimensionless natural frequency vs temperature rise 
with nonlinear temperature field for various index 
values (k=1, 2, and 5, kw=50, ks=50): (a) First mode 
and (b) Second mode.

kw ks h/L K=0 k=5
ref. [1] Present ref. [1] Present

0 0 0.05 0.0291 0.0286 0.0197 0.0200
0.1 0.1134 0.1114 0.0767 0.0771
0.15 0.2454 0.2407 0.1648 0.1651
0.2 0.4154 0.4070 0.2765 0.2733

100 0 0.05 0.0298 0.0295 0.0210 0.0214
0.1 0.1162 0.1153 0.0821 0.0828
0.15 0.2519 0.2501 0.1775 0.1778
0.2 0.4273 0.4250 0.2999 0.2989

0 100 0.05 0.0406 0.0403 0.0381 0.0382
0.1 0.1599 0.1591 0.1515 0.1515
0.15 0.3515 0.3512 0.3362 0.3362
0.2 0.6080 0.6105 0.5879 0.5888

100 100 0.05 0.0411 0.0410 0.0388 0.0390
0.1 0.1619 0.1619 0.1543 0.1545
0.15 0.3560 0.3577 0.3427 0.3430
0.2 0.6162 0.6224 0.5993 0.6001

table 1. the natural frequency parameter of FG square plate 
versus the shear and Winkler parameters, power law 
index and thickness
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Figures 3(a) and 3(b) show the effect of Winkler 
foundation constant on natural frequency of FGM plate for 
first and second-mode, respectively. The Winkler foundation 
constant various from 0 to 500. It can be anticipated that the 
first two mode natural frequencies increase as the Winkler 
constant increases for power law index values k = 1, 2, and 5. 
The increase of index value reduces the frequency parameter. 

law index. Increase in power law increases the metal content, 
and hence, effective stiffness of the FGM plate reduces. 

Figure 6 illustrates the influence of the temperature 
rise on the first two-mode instability regions of FGM plate 
on Pasternak foundation (kw=50, ks=50). The temperature 
differences considered are 0 K, 300 K and 600 K above the 
ambient temperature. It was noticed that with increase in 
temperature the instability regions relocate towards the lower 
excitation frequencies. This means that increase in temperature 
enhances the dynamic instability of the FGM plate. Due to 

Figure 3. Effect of Winkler constant on first two frequency 
parameters (ks=50, T∆ =200 K): (a) First mode and 
(b) Second mode.

Figure 4.  Effect of shear layer constant on first two frequency 
parameters (kw=50, T∆ =200 K): (a) First mode and 
(b) Second mode.

Figures 4(a) and 4(b) describe the effect of shear layer 
constant on the first two-mode natural frequency for different 
values of power law index k = 1, 2, and 5, respectively. Figure 
5 shows that the natural frequency of FGM plate increases with 
increase in the value of shear layer constant. This tendency 
is observed because effective stiffness increases as the shear 
layer constant increases and consequently, the stiffer effective 
stiffness increase the natural frequencies.

4.3 Parametric Instability 
The first-and second-mode principal instability regions of 

FGM plate resting on Pasternak foundation (kw=50, ks=50) for 
different index values k = 1, 2, and 5 are shown in Fig. 5. It is 
observed that the first-and second-mode instability regions shift 
towards the dynamic load axis with increase in index values 
k = 1, 2, and 5. So the increase in index value increases the 
instability of FGM plate on elastic foundation. This happens 
due to the reduced natural frequencies with increased power 

Figure 5. Regions of instability for first two-mode of FGM 
plates on Pasternak foundation (kw=50, ks=50).
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the increased temperature, the effective young’s modulus 
decreases, and there is a reduction in natural frequencies. 
This leads to occurrence of instability at lower frequencies 
of excitation.  The effect of temperature rise on second-mode 
instability regions is found to be more prominent than on the 
first-mode instability regions. 

Figures 7(a) and 7(b) show the first two-mode instability 
regions of FGM plate supported on Winkler foundation (kw=0, 
200, and 400) and shear layer constant (ks=50) for index values 

Figure 6.  dynamic instability regions of FGM plate resting on 
Pasternak foundation (kw=50, ks=50), (k=1).

Figure 7. Effect of Winkler foundation constant on first-and 
second-mode instability of FGM plate for index values 
(a) k=1 and (b) k=5.

Figure 8.  Effect of Shear layer constant on first-and second-
mode instability of FGM plate with index values (a) 
k=1 and (b) k=5.

k=1, and k=5, respectively. Increase in Winkler foundation 
constant moves the instability regions away from the dynamic 
load factor axis.This happens due to the fact that the natural 
frequencies increase with increase in foundation stiffness. 
So, the increase in Winkler foundation constant increases the 
stability of the plate. It was observed that effect on the first-
mode instability regions is more prominent than on the second 
mode instability regions. 

The first two mode instability regions of FGM plate with 
k = 1 and k = 2 resting on Winkler foundation (kw=50) and 
shear layer constant (ks= 0, 100 and 200) are shown in Figs. 
8 (a) and 8(b), respectively. Here the instability regions are 
located farther from the dynamic load factor axis with increase 
in shear layer constant. It was observed that increase of shear 
layer constant has got more influence on the stability of plate 
that than of Winkler elastic foundation constant.

5.  concluSIonS 
The study of free vibration and dynamic stability of a 

FGM plate resting on elastic foundation under high temperature 
thermal environment has been studied introducing third-order 
shear deformation theory. The first two natural frequencies of 
FGM plate resting on elastic foundation decrease with increase 
in temperature and power law index values and it is due to 
reduction of effective stiffness. The frequencies of first two 
modes increase with increase of Winkler foundation constant 
and shear layer constant.     
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Increase of environment temperature and power law index 
has a destabilising effect on the dynamic stability of the FGM 
plate. on the contrary, increase in Winkler foundation constant 
and shear layer constant enhances the stability of the plate. The 
shear layer constant has a dominant influence on the dynamic 
stability of the FGM plate compared to the Winkler foundation 
constant. 
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