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1.  IntroductIon
Unmanned aerial vehicles (UAVs) represent a rapidly 

emerging technology that has attracted significant research 
interest in the last decades due to its high demand in both 
military and civil applications. With structural forms derived 
from airplanes, helicopters or dirigibles, these flying robots 
exhibit artificial intelligence capabilities derived from their 
sensing, computing and actuating attributes. The UAVs are 
currently being utilized in a wide spectrum of tasks ranging 
from reconnaissance1 or surveillance2 to target search and 
destroy missions3. 

Under normal circumstances a patrol UAV tasked 
with a surveillance mission of a specified three-dimensional 
zone, pursues an optimized path that covers each section of 
the patrolled volume at regular time intervals. In adversarial 
conditions this task-oriented approach has to be enriched using 
unpredictable trajectories to cope with enemy entities.

To solve this problem we started from the lessons learned 
in the field of Unmanned Ground Vehicles (UGVs), where 
coping with enemies was addressed following two different 
lines of thinking: game theory and chaotisation of the UGV’s 
path:
• The game theoretic perspective uses mathematical 

models to characterize patrolling tasks (models for the 
environment, for the UGV itself and for the enemies) and 
try to solve the problem by reducing it to classic pursuit-
evasion games. Significant game theoretic approaches 
have been designed for various patrolling settings like 
single4 or multi-robot patrolling5, with complete or partial 

information about adversaries6. In spite of their reliable 
theoretical foundation, due to simplifying hypotheses 
and computational intricacy, the game theory methods 
are inappropriate in real-life applications where UGVs 
are facing dynamically environments and unidentified 
opponents.

• The approaches based on chaotisation of UGV’s 
trajectories are covering three basic patrol missions – 
area surveillance7,8, points of interest surveillance9,10 
and boundary surveillance11, and rely on the proven 
unpredictability of the chaotic paths. In these methods the 
normal patrolling trajectory is changed into a misleading 
one using the chaotic dynamics revealed by well-known 
chaotic systems (e.g. Henon, Lorenz, Chua, etc.).
While in the case of UGVs a series of relevant scientific 

research involving chaotic dynamics has been reported, in the 
case of flying robots no solutions have been proposed so far. 
Trying to cover this research gap, present paper proposes an 
efficient approach for a patrol UAV to surveil a given 3D sector. 
For this, the flight path is described by a sequence of waypoints 
generated based on an adapted version of the 3D Arnold’s 
chaotic cat map. The unpredictability of such trajectories is 
ensured by an intrinsic characteristic of any chaotic system: 
sensibility to initial conditions, also known as the butterfly 
effect12. Our method, due to its low computational complexity 
and memory requirements, can be efficiently performed using 
only UAV’s onboard resources. Thus, before take-off, the UAV 
is programmed with the precise spatial location of the 3D zone 
under investigation and then the waypoints are computed one-
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by-one during the flight. To validate our methodology, we 
present an illustrative simulation case study involving a highly 
maneuverable UAV (a quadcopter) that evolves in a specified 
volume of 640 cubic meters.

2.  ProbleM StAteMent And PrelIMInAry 
AnAlySIS
To patrol a three-dimensional zone in adversarial 

conditions, an autonomous UAV should accomplish its task 
using a path that is unpredictable for enemies. This problem 
can be formalised as follows:

Problem Formulation: Consider a given rectangular 
parallelepipedic 3D zone to be covered by an autonomous 
UAV exhibiting an unpredictable character for any enemy 
entity. Our task is to find a UAV path, described by uniformly 
distributed waypoints inside the zone and computed onboard 
with limited computational and energy resources.

In principle, the process of imparting unpredictability to 
UAVs paths may be attacked from two different perspectives: 
using random sequences or using chaotic sequences of 
intermediary flight points. While chaotic sequences are 
generated in a deterministic manner by a chaotic dynamical 
system12, the random sequences are fundamentally non-
deterministic therefore irreproducible even if the initial states 
are exactly identical13.  

In the case of our problem, there are two reasons that make 
the chaotic alternative more attractive: a) in the case of a chaotic 
waypoints generator, the ally entities, having full knowledge 
about the way intermediary points are obtained (the chaotic 
sequence generator is deterministic), can predict the future 
movements of the UAV and make appropriate decisions; and b) 
a truly random sequence cannot be implemented in practice, its 
pseudorandom variant having in fact a deterministic character.

We identified a set of three essential features that must 
be met by a chaotic system to efficiently solve the above-
mentioned problem: 
(i)  To provide a pseudo-random uniform distribution of 

waypoints in a predetermined volume V of the 3D space
(ii)  The volume V to be a trapping region14 for the chaotic 

system and 
(iii)  To allow a real-world implementation using only the low 

on-board computational and energy resources. 
Analyzing various chaotic maps presented in scientific 

literature, we found an ideal candidate - a variant of the 3D 
Arnold’s cat map.

3. the 3d chAotIc cAt MAP
The Thom diffeomorphism of the 2-torus15, better 

known as the classic Arnold cat map16 is a hyperbolic toral 
automorphism described by the following formula:
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where the state variables ix  and iy   are restricted to the interval 
[ )0,1  using the mod1 operation which extracts the fractional 
part. 

The Arnold cat map gained its popularity due to numerous 
applications in the field of image encryption, steganography 

and watermarking. In the last fifteen years, the cat map was 
generalized in the three-dimensional space17 offering new 
application opportunities. To develop a chaotic path for UAVs 
accomplishing surveillance missions in a given bounded 
volume of space, we adopted the 3D cat map variant described 
by Chen17, et al. in the form:

    
        

(2)
where all the parameters (ax, ay, az, bx, by, bz) are positive 
integers.

By particularising all these six parameters to be equal to 
one, we obtain the 3D cat map version used in our research:
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that is an invertible volume-preserving map (the determinant 
of A matrix is equal to 1), which also exhibits a typical chaotic 
behavior: the three eigenvalues of A are 1 7.1842 1σ = >
, 2 0.2430 1σ = <  and 3 0.5728 1σ = < , while the maximal 
Lyapunov exponent is 1 1log 0.8563 0λ = σ = > . because 
the origin O(0,0,0) is a fixed point of transformation (3), we 
should take any other starting point of the bounded volume 
[0,1)×[0,1)×[0,1) to obtain chaotic trajectories (Fig.1).

Figure 1.  3d Arnold cat map.

The 3D cat map extends the uniform pseudorandom 
distribution of the state variables from 2D space to 3D space18 
and represents the kernel of our methodology to solve the 
effective coverage of a 3D zone when an unpredictable 
trajectory is required.  
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4.  chAotIc PAth PlAnnIng Method
The approach we propose herein is divided in four steps 

and covers the entire path planning mechanism from the way 
the coordinate system is selected to the onboard waypoints 
generating as fallows:

Step 1: Specify the local North-East-Down (NED) 
coordinate system in which the UAV will evolve; in the practice 
of aircraft or rotorcraft navigation, several coordinate systems 
are intensively utilised19: the geodetic, the local NED, the 
vehicle-carried neD, the earth-centered earth-fixed (eCeF) 
and the body coordinate systems. Using specific transformation 
formulas20 all of these coordinate frames can be converted into 
one another, so a particular choice does not affect the generality 
of our approach. Due to the ease of coordinates’ manipulation 
inside the methodology and for the clarity of our explanation we 
chose the local NED coordinate system to be the chosen frame. 
This Cartesian coordinate system is considered to be intuitive 
and adequate for flight navigation scenarios extended to no 
more than some tens of kilometers, covering most situations 
in which UAVs are involved. To specify a local NED frame20 
we need to establish the origin (a chosen fixed point on earth’s 
surface) and to consider the x and y axes pointing towards the 
geodetic North and geodetic East respectively, while the z-axis 
is pointing downward as presented in Fig. 2.

by the matrix RΛ ; and finally a translation with the transform 
matrix 2TΛ that will move the parallelepiped in the desired 
place, as follows:
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where zθ is the rotation angle with respect to z-axis, 1l , 
 2l , 3l are the length of the parallelepiped edges and Opx, Opy and 
Opz are the coordinates of the parallelepiped’s center.

Computing the matrices multiplication in (4), the 
concatenated affine transformation Λ  can be expressed in the 
form:
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(5)
that will map each point inside the unit cube into the desired 
parallelepiped where the UAV will evolve.

Step 3: Generate the chaotic sequence of waypoints in 
the desired parallelepipedic volume; the succession of points 

[ ]T
i i i ip x y z= generated inside the unit cube using 

the 3D cat map (3) are mapped using the resultant affine 
transformation Λ  to obtain the chaotic sequence of waypoints

[ ]T
i i i ip x y z=     within the desired parallelepiped. This 

operation is expressed in homogeneous coordinates by the 
equation:

i ip p= Λ ×                                                                      (6)
that can be rewritten in terms of its components, in the following 
form:

Figure 3 Affine transform Λ .

Figure 2.  local ned coordinate system.

EARTH

Step 2: Choose the 3D zone that has to be covered by the 
UAV; we will select a rectangular parallelepiped with the bases 
parallel to the ground (xoy plane in local NED coordinate 
system) that will permit the accomplishment of UAV’s 
surveillance task. This particular parallelepipedic shape can be 
considered as the image of the unit cube through a one-to-one 
affine transform as presented in Fig. 3.

The Λ transformation matrix using homogenous 
coordinates results by combining four elementary affine 
transformations: a translation with the transformation matrix

1TΛ  that will move the center of the cube in the origin of the 
coordinate system; a scaling with the matrix SΛ that will adapt 
the lengths of the edges; a rotation around z-axis described 
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(7)
Due to the mod1 operation that is applied inside the 3D 

cat map, the eqn (7) cannot be used as variables’ changing 
relations, so this step needs to be implemented in two stages: 
first the points ip  are generated inside the unit cube using eqn  
(3) and after that each of these points are mapped inside the 
desired rectangular parallelepiped using eqn (7). 

Step 4: Following the path; having the sequence of 
waypoints ip , the UAV will start moving from one waypoint 
to the next one accomplishing the shortest possible trajectory. 
This trajectory between two successive waypoints even it is 
desirable to be a line segment is affected by flight dynamic 
constraints of the UAV21.

5.  uAV FlIght SIMulAtIon
Unmanned aerial vehicles can be categorized into three 

different subsets depending on their lift-creating elements: fixed 
wing aircrafts (airplanes), rotor wing aircrafts (helicopters) and 
lighter than air vehicles (airships or dirigibles). Our methodology 
is aimed for all of these UAV types, but the effectiveness of the 
approach is superior for highly maneuverable aircrafts (they 
can easily follow the sudden direction changes required by 
the sequence of waypoints). For this reason, our approach is 
exemplified on a quadcopter (quadrotor helicopter) which is a 
rotorcraft with two pairs of counter-rotating vertical propellers 
that exhibits agile manoeuverability correlated with vertical 
take-off and landing (VTOL) capability and hovering ability.

The flight through the sequence of waypoints (Fig. 4) is 
simulated using the mdl_quadcopter Simulink model for the 
X-4 Flyer22 included in the matlab Robotics Toolbox23, while 
the waypoints are generated by a new matlab block that we 
developed based on our methodology.

The complex control system is based on a decoupled 
aerodynamic model which separates the longitudinal from 

azimuthal modes and employs roll-pitch-yaw angles to 
represent the orientation and orientation rate of the quadrotor. 
A set of linear SISO control loops is used to control the attitude 
or to compute the required thrust and torques to move the UAV 
to the desired waypoint. The pitch and roll angles are controlled 
using a cascade structure with an inner attitude control loop and 
an outer position loop. Two other independent control loops 
are used to control the yaw and the altitude. All these loops are 
based on proportional-derivative controllers.

The flying path between two waypoints cannot be 
accomplished on the straight line segment joining the pair 
of points due to inherent kinematic and dynamic constraints 
described by the flight envelope and the actuators’ limitations. 
The flight envelope is represented by the pitch and roll angles 
and the actuators’ limitations are the maximal thrusts that can 
be generated by the rotors24. by considering the mentioned 
constraints, the real trajectory will be smoother but its global 
unpredictability will not be affected.

To examine the uniform pseudorandom distribution of 
the waypoints inside the surveilled volume, we split the unit 
cube in 125 cube-shaped cells (each dimension was split in 
5) and we generated one million successive values using 
eqn (5) starting with the initial point having the following 
coordinates: x0=0.0831, y0=0.6811; z0=0.7289. For an ideal 
uniform distribution, all 125 bins have equal number of points: 
8000. In our case we obtained a minimal value of 7792 and 
a maximal value of 8207 which correspond to a maximum 
absolute deviation of around 2.6 per cent that confirms the 
uniform pseudorandom distribution. In Fig. 5 we represented 
the number of values in every cell.

To estimate the effectiveness of the volume coverage 
accomplished by the proposed approach we used the coverage 
rate described by the formula:

1

1 ( )
M

i
C l i

M =

= ⋅∑                                                               (8)

where M represents the total number of cubic cells in 
which the volume was split, while l(i) is a binary variable 
reflecting the status (visited or not visited) of the cell:

Figure 5. eva luat ion  o f  the  un i form pseudorandom 
distribution.

Figure 4. A snapshot of the quadcopter performing the 
surveillance task.
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1  if the cell i was visited      
( )

0 if the cell i was not visited
l i 

= 


                          (9)

If we choose to divide each dimension of the entire volume 
to be covered in n parts, we will obtain a total of M=n3 cubic 
cells. Figure 6 depicts the coverage rate progression in three 
particular cases: n=5 (M=125 cells), n=8 (M=512 cells) and 
n=10 (M=1000 cells).

starts from the initial point [ ]0 0.2 0.2 0.05 Tp =  of the unit 
cube or equivalently at the [ ]0 0 3.38 1.5 Tp =  inside the 
surveilled parallelepiped and navigates through 79 consecutive 
waypoints. Derived from the ‘sensitivity to initial conditions’ 
feature of the 3D cat map chaotic system, the unpredictability 
of the UAV’s path is ensured by the waypoints’ generating 
method. 

The path is generally situated inside the given rectangular 
cuboid as presented in the xoy flight’s projection (Fig. 8), 
where the dashed line represents the projection of the chosen 
boundary parallelepiped on the ground plane. 

The parallelepipedic boundary is rarely crossed, this 
situation occurring only for short intervals due to the above-
mentioned flight constrains of the quadcopter.

In the following paragraphs an illustrative simulation 
case study is presented. The 3D zone that will be covered by 
the quadcopter in its chaotic flight is represented in the local 
NED coordinates by a rectangular cuboid having the center 

[ ]0 0 6 T
pO m= , the lengths of the edges 1 2 8l l m= =  

and 3 10l m= and the rotation angle about z axis / 4zθ = π . 
In this case, the waypoints are obtained applying the affine 
transformation (7) in the following particular form:
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                                             (10)

In Fig. 7 we illustrated the quadrotor’s path pursued 
during 8 minutes of flight time. The UAV’s flight simulation 

Figure 8.  Flight path projection on the ground plane.

Figure 7. uAV’s trajectory and related waypoints.

Figure 6.  Volume coverage rate.

6.  concluSIonS
Autonomous unmanned aerial vehicles are considered 

to be adequate solutions for diverse types of surveillance or 
reconnaissance missions in harsh or hazardous environments. 
In adversarial conditions, the unpredictability of the UAV’s path 
represents a critical and challenging issue. In this context, the 
present paper introduces a novel method for generating flight 
waypoints sequences based on the chaotic dynamics exhibited 
by a carefully constructed variant of the 3D Arnold’s cat map. 
Due to its low computational cost and memory requirements, 
the method is suitable to be carried out using only UAV’s 
onboard resources. Therefore, the precise spatial location of 
the 3D sector to be surveilled is loaded in the UAV’s memory 
before its take-off, the waypoints being computed one-by-one 
during the flight.
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