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1. IntroductIon
Aircraft is a kind of non rigid targets with complex shapes. 

The non rigid vibration or attitude change of aircraft relative 
to the observation radar will induce complicated nonlinear 
modulations on the echo amplitude and its phase1. In addition, 
the jet engine modulation (JEM) induced by the rotation 
of the aircraft rotating parts, such as the rotor, empennage, 
propeller, turbine fan, etc., is also a typical nonlinear 
modulation, which embodies in the echo characteristics, such 
as amplitude, phase, frequency, and polarisation1-3. These kinds 
of nonlinear modulations reflect the complicated micro-motion 
modulation effects of various parts of aircraft and contain 
target attribute information, such as the geometric structure, 
material composition, etc.4-5. Different types of aircraft targets 
generally have different structure and rotating parts, and often 
have different nonrigid vibration and JEM characteristics. 
So if these nonlinear modulation signatures which reflect the 
physical characteristics of an aircraft target can be extracted 
effectively, then one may apply them to target classification 
and recognition directly6-7.

So far, some scholars have proposed several theoretical 
models for aircraft echoes from low-resolution radars8-12. 
However, due to the complexity of the nonlinear modulation 
induced by the nonrigid vibration or attitude change, most 
models have paid more attention to the modelling of the JEM 
echo section, and simplified the modelling of the airframe echo 
section; so in some cases they are unsatisfactory in analyzing 
the nonlinear modulation characteristics of aircraft echoes from 
low-resolution radars. In recent years, some fractal geometry 
methods, such as mono-fractal, fuzzy fractal, multifractal, etc., 
have been introduced into the characteristic analysis of aircraft 
echoes from low-resolution radars6,12-14. However, it has not 

been reported that self-affine fractal theory has been applied 
to the modelling of real-recorded aircraft echo data from low-
resolution radars so far. Therefore, the paper plans to take 
self-affine fractal theory as the tool to model aircraft echoes 
from low-resolution radars. On basis of introducing self-
affine fractal theory, the text models aircraft echoes from low-
resolution radars by using the self-affine fractal representation 
method15, analyzes their self-affine fractal characteristics, and 
investigates the application of echo self-affine fractal signatures 
in aircraft target classification.

2. the theoretIcal basIs 
2.1 the theoretical basis of self-affine Fractal

Iterated function system16 (IFS) theory is a powerful 
mathematical tool for the research of self-affine fractal, which 
is built on the basis of the compression mapping. Firstly, 
the definitions related to compression mapping are given as 
follows17.
Definition 1: Let ( ),dX  be a metric space and ω  be a mapping 
of →X X . If there exists a positive constant, forming 

( ) ( )( ) ( ), ,d x y c d x yω ω ≤ ⋅ , ,x y∀  ∈ X  then ω  is called a 
compression mapping, and c is its compression factor.
Definition 2: A hyperbolic IFS is composed of a 
complete metric space ( ),dX  and a set of compression 
mapping :iω →X X  with its compression factor ic  
( 0 1, 1,2, ,ic i N≤ < =  ). The system can be expressed 
as { }; , 1, 2, ,i i Nω =X  , and its compression factor 

{ }max , 1,2, ,ic c i N= =  .
If a time series is known, then one can construct an IFS 

and make its attractor approximate a specified sequence to 
model the series. Research on the attractor is usually carried 
out in the Hausdorff metric space. One can map the series to the 
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corresponding local through each of the self-affine transform 
of the IFS and piece these local fragments together, and then 
the error of the new series with the original series describes the 
degree of similarity between the attractor generated by the IFS 
and the original series. The smaller is the error, the higher is 
the degree of similarity between the two. For the error with the 
original series, the following collage theorem gives a metric 
method.
Collage theorem18: Let ( ),dX  be a complete metric space, 
and the elements of the space ( )H X  consist of all non 
empty set of  X. If given ( )H∈L X  and 0ε ≥ , one can select 
an IFS { }; , 1, 2, ,i i Nω =X   with its compression factor c (
0 1c≤ < ), making

( )
1

,
N

i
i

h
=

 
ω ≤ ε 

 
L L


                                                       (1)

then one can get ( ) ( ), 1h c≤ ε −L A , where A denotes the 
attractor of the IFS and ( )h ⋅  is Hausdorff distance.

2.2 representation of self-affine Fractal
Authors described the theoretical basis of self-affine 

fractal for modelling a time series, below we further discuss 
the realisation of self-affine fractal19. Consider a linear affine 
mapping of point ( ),t x  in the t x−  plane, defined as

0t a t e
x c d x f

      
ω = +      

      
                                           (2)

where a, c, d, e, and f are the mapping parameters, t is the 
time, and x is the amplitude of the signal. The mapping in 
Eqn (2) is called shear transformation; this is because it has 
different scaling in the horizontal and vertical direction. The 
parameter d is called the compression factor of the mapping, 
and ( )1, 1d ∈ − + . If the signal ( )x t  defined in the interval 

0 , ft t    is self-affine and the corresponding endpoint values 
are 0x  and fx , then for the subinterval ,p qt t   , there exists 
a linear mapping iω  which maps the signal in 0 , ft t    to the 
signal fragment in [tp, tq]. In particular, 0x  and fx are mapped 
as xp = x(tp) and xq = x(tq), so

0

0

,p q f
i i

p q f

t t tt
x x xx

      
= ω = ω      

      
                                    (3)

According to Eqn (3), a, c, e, and f can be calculated 
by the compression factor d and the corresponding boundary 
values, which can be expressed as

0
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Assume that t0 ≤ tp ≤ tq ≤ tf, then the compression factor 
d can be obtained by the analytic technique19. Obviously, the 

affine mapping iω  is completely determined by the compression 
factor d and the subinterval boundary condition. In practice, 
the signal is often a discrete time series. When iω  compresses 
the whole series to a series subset according to the proportion, 
the number of sampling points will not be consistent before 
and after mapping. If assuming that the discrete series is 
{ }, 1, 2, ,nx n N=   and [ ],p q is the subinterval of [ ]1, N , i.e., 
1≤ p ≤ q ≤ N, where p, q and N are all positive integers, then 

iω  is an approximate affine mapping, viz.

( ) , 1, 2, ,i
in

mn
n N

mx
  

ω = =   ω   
                                 (8)

with p ≤ m ≤ q. Here, the symbol ( )i mω  denotes the image 
of xn in the m position. Attention is required, here m is not 
necessarily an integer. The optimal compression factor d for the 
mapping should make the mean square error (MSE) between 
the mapping value and the measured value smallest, and the 
error function20 is

( ) 2
q

d k
k p

E k x
=

= ω −  ∑                                                     (9)

Obviously, in the subinterval, the mapping points is N, 
while the measuring point has only q - p + 1. In Eqn (9), ( )i kω  
denotes the average value of all ( )kω , where round( )m k=  
( round( )⋅ represents the nearest integer). The method is used 
to overcome the inconsistency of the sampling points before 
and after mapping. The minimum variance estimator for the 
compression factor d is19
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with
( )

( ) ( )
1

round

1

1
n n n n N
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A x x x

B x x x⋅ +

 = − ξ + − ξ  


 = − ξ + − ξ  
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and

1n
N n
N

−
ξ =

−
.                                                                  (12)

3. selF-aFFIne Fractal ModELLing oF 
aIrcraFt echoes

3.1  Self-affine Modelling of a Signal
Consider a discrete time series { },nx  n = 1, 2, …, N, 

which can be divided into M overlapping subintervals with 
δ and φ as their sizes, there into, δ denotes the number of 
points in the subinterval, and φ denotes the overlapping points 
of two adjacent subintervals. Due to self-similarity, each 
subinterval is the replication of the whole series by shrinking 
proportionally and rotating corresponding to the compression 
factor. Segmenting data according to this method, we can get 
M contraction factors , 1, 2, ,id i M=  . The evolution process 
of the contraction factor can be modelled as a P-th order AR 
process20, i.e.

1

P

j l j l j
l

d d −
=

= α + ε∑                                                       (13)
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where jε  is the noise term and lα  are AR model coefficients. 
P can be selected by Akaike’s Information Criterion (AIC)21. 
Then the (M+1)-th contraction factor can be estimated as

1 1
1

ˆ
P

M l M l
l

d d+ + −
=

= α∑                                                       (14)
 
As can be known from Eqns (4) ~ (7), the mapping is 

completely determined by the two boundary values and the 
contraction factor. The estimator 1

ˆ
Md +  of dM+1 can be obtained 

by Eqn (14). Because the data overlap, the right boundary can 
be estimated by the minimum mean square error between the 
estimation value and the actual value of the overlapping part of 
the (M+1)-th subinterval. And then it can be used to predict the 
values of { },nx n N> .

3.2 Echo Modelling Results based on Self-affine 
Fractal
The echo data used in the text are recorded from a 

surveillance radar, and they are from two different types of 
aircraft targets with the one fighter aircraft and the other civil 
aircraft. There into, the radar operates in the VHF band with 
its PRF 100 Hz and pulse width 25 μs, and the flight attitude 
of both types of aircraft targets contains two kinds: towards 
the radar station and off the radar station. In the working band 
of the experimental radar, the RCS values of the two kinds of 
aircraft targets fluctuate slowly. In the forward or backward-
looking to the range of plus or minus 30 degrees, the RCS 
value of the fighter target is about 15 m2, while the RCS value 
of the civil aircraft target is about 31.6 m2. Figures 1 (a) and 
1(b) show the self-affine fractal modelling results of a group of 
a normalised echo data from both types of aircraft targets when 
fly off the radar station. Among them, the echo data points N 
equals to 1024, the number of points in a subinterval δ equals 
to 32, and the number of overlapping data points φ equal to δ/2. 
Figure 2 presents the relationship curves of the mean square 
modelling error Ex of these two groups of echo data with δ, and 
the number of overlapping data points φ are also δ/2.

It can be seen from Fig. 1, compared to echoes from the 
fighter target, although echoes from the civil aircraft fluctuate 
more intensely, but the self-affine fractal model can effectively 
track the change trend of the two kinds of echo data, and 
therefore it can model them effectively. As can be seen from 
Fig. 2, the mean square modelling errors of echo data from the 
two types of aircraft targets increase with the increase of δ, but 
with the further increase of δ, both them grow more and more 
slowly and gradually stabilize. Comprehensively considering 
the factors such as the amount of calculation, 128 is selected 
as the number of points in a subinterval, i.e., δ = 128, and φ is 
still taken as δ/2.

Figure 3 shows the distributing circumstances of the 2-D 
signatures composed of the mean square modelling error Ex and 
the model order P of the AR process of the contraction factor d 
of echo data from both types of aircraft targets, with ‘’ and ‘o’ 
denoting the fighter aircraft and the civil aircraft, respectively. 
Among them, the group numbers of echo data from both types 
of aircraft are all 2560, with the echo group numbers for each 
flight attitude 1280. It can be seen from the figure, although 
there are some overlaps between the 2-D signatures of both 
types of aircraft targets, as a whole, the signatures belonging to 

different types of aircraft separate from each other distinctly. 
Therefore, if combining the two characteristic parameters 
together to identify different types of aircraft targets, it is 
hopeful to obtain a better performance.

4. AiRcRAFt tARgEt cLASSiFicAtion 
based on selF-aFFIne Fractal 
SignAtuRES
Section 3 shows that the self-affine fractal method can 

model an aircraft echo from low-resolution radar effectively. As 
pointed out in the introduction, echo data from different types 

Figure 1. Self-affine fractal modelling of echo data from two 
types of aircraft targets (a) civil aircraft and (b) 
Fighter aircraft.
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of aircraft targets often have different nonlinear characteristics, 
and thus they certainly will appear different self-affine fractal 
signatures. Therefore, it provides a probability for aircraft 
target classification and recognition with low-resolution radars. 
Based on the foregoing real recorded aircraft echo data, below 
the paper will investigate the application of self-affine fractal 
signatures in aircraft target classification with low-resolution 
radars.

Due to complexities of the actual target state and the 
environment, the target attitude, distance, background, etc. 
often change, which makes the raw target echo data cannot be 
directly used for feature analysis and extraction, and therefore 
one must do some data preprocessing to reduce the influence 
of these factors. Here the following two kinds of preprocessing 
will mainly be done: one is attitude partition, the other is energy 
normalisation. The specific method can be found in Literature 14.

Based on the difference between the distributing 
circumstances of the 2-D signatures of echo data from both 
types of aircraft targets shown by Fig. 3, here Ex and P are 
chosen as the characteristic parameters for target classification. 
Compared to other classifiers, support vector machine (SVM) 
has stronger generalisation abilities and a faster convergence 
rate22, so in the experiment SVM using the gaussian kernel 
function is taken as the classifier, and the kernel function 
parameters are selected rationally without going beyond the 
calculation burden.

Table 1 shows the classification results of the two types of 
aircraft targets, and as a contrast, the results using the raw echo 
data without performing any preprocessing are also presented. 
Among them, the group numbers of echo data from both types of 
aircraft targets are the same as those in Fig. 3, and for each type 
of aircraft targets, the signature data extracted from 512 groups 

of echo data are chosen as training samples (the group numbers 
for each of the two flight attitudes useful for classification are 
256), with the rest signature data as testing samples. As can be 
seen from Tab. 1, the average correct classification rate (CCR) 
is more than 91 per cent, and the data preprocessing obtains a 
classification gain more than two percentage points. Therefore 
the classification effect is satisfactory. What should be pointed 
out is that the signature dimension reduction processing 
has been done in the classification experiment. If the whole 
signatures such as the AR model parameters of the contraction 
factor d are made full use of, the average CCR could still have 
an increase to a certain extent. Of course, this will lead to the 
increase of the feature dimension and the computation of the 
algorithm.

5. conclusIons
Based on the complex nonlinear modulation characteristics 

induced by the nonrigid vibration and attitude change of 
aircraft targets along with the JEM effect, the paper models 
aircraft echoes from low-resolution radars from the viewpoint 
of self-affine fractal. On basis of introducing self-affine fractal 
theory, it models the real recorded aircraft echo data from low-
resolution radars by using the self-affine fractal representation, 
and investigates the application of aircraft echo self-affine 
fractal signatures in target classification with low-resolution 
radars. The experimental results show that:
(i) It is an effective method to model aircraft echoes from 

low-resolution radar using a self-affine fractal model; 
(ii) If one performs the self-affine fractal analysis of measures 

on an aircraft echo, it is hopeful to reveal its internal 
dynamics evolution mechanism;

(iii) Self-affine fractal characteristic parameters of aircraft 
echoes can be used as effective signatures for aircraft 
target classification with low-resolution radars.

reFerences
1. Huang, P.K.; Yin, H.C. & Xu, X.J. Radar target 

characteristics. Publishing House of Electronic Industry, 
Beijing, 2005.

2. Nalecz, M.; Andrianik, R.R. & Wojtkiewicz, A. Micro-
Doppler analysis of signal received by FMCW radar. In 
Proceedings of International Radar Symposium, germany, 
2003, pp.231-235.

3. Ding, J.J. & Zhang, X.D. Automatic classification of 
aircraft based on modulation features. J. Tsinghua 
University (Sci. Technol.), 2003, 43(7), 887-890.
doi:10.3321/j.issn:1000-0054.2003.07.009.

4. Chen, V.C.; Li, F. Y.; & Ho, S.S. Micro-Doppler effect in 
radar: Phenomenon, model, and simulation study. IEEE 
Trans. AES, 2006, 42(1), 2-21.
doi: 10.1109/TAES.2006.1603402

5. Zhuang, Z.W.; Liu, Y.X. & Li, X. The achievements of 
target characteristic with micro-motion. Acta Electron. 
Sinica, 2007, 35(3), 520-525.
doi: 10.3321/j.issn:0372-2112.2007.03.028.

6. Li, Q.S. & Xie, W.X. Target classification with low-
resolution surveillance radars based on multifractal 
features. Progress Electromag. Res. B, 2012, 45, 291-

Figure 3. distributing circumstances of 2-d signatures 
composed of Ex and P of echo data from both 
types of aircraft.

table 1.  classification results

using raw 
echo data (%)

using preprocessed 
echo data (%)

Fighter aircraft 86.86 91.77

Civil aircraft 90.89 90.48

Average CCR 88.77 91.11



LI, et al.: SELF-AFFINE FRACTAL MODELLINg OF AIRCRAFT ECHOES FROM LOW-RESOLuTION RADARS

155

308.
doi:10.2528/PIERB12091509

7. Martin, J. & Mulgrew, B. Analysis of the effects of blade 
pitch on the radar return signal from rotating aircraft 
blades. In Proceedings of the IEEE 1990 International 
Radar Conference, 1990, pp. 569-572.
doi: 10.1109/RADAR.1990.201091

8. Bell, M.R. & grubbs, R.A. JEM modelling and 
measurement for radar target identification. IEEE Trans. 
AES, 1993, 29(1), 73-87.
doi: 10.1109/7.249114

9. Pizza, E. Radar signals analysis and modellisation in the 
presence of JEM application in the civilian ATC radars. 
IEEE AES Magazine, 1999, 14(1), 35-40.
doi:10.1109/62.738353

10. Ding, J.J.; Zhang, X.D. & Lv, J.J. Modelling of the 
modulation signature for aircraft returns in the conventional 
radar. Sys. Eng. Electron., 2003, 25(11), 1407-1410.
doi:10.3321/j.issn:1001-506X.2003.11.028.

11. Chen, F.; Liu, H.W. & Du, L. Target classification with 
low-resolution radar based on dispersion situations of 
eigenvalue spectra. Sci. China: Info. Sci., 2010, 53, 1446-
1460.
doi:10.1007/s11432-010-3099-5

12. Ni, J.; Zhang, S.Y. & Miao, H.F. Target classification of 
low-resolution radar based on fractional Brown feature. 
Modern Radar, 2011, 33(6), 46-48.
doi:10.3969/j.issn.1004-7859.2011.06.011.

13. Li, Q.S. & Xie, W.X. Classification of aircraft targets 
with surveillance radars based on fuzzy fractal features. 
Progress Electromag. Res. M, 2013, 29, 65-77.

 doi:10.2528/PIERM12121601
14. Li, Q.S., Xie, W.X. Multifractal modelling of aircraft 

echoes from low-resolution radars based on structural 
functions. Def. Sci. J., 2013, 63(5), 515-520.

 doi: 10.14429/dsj.63.3773
15. guan, J; Liu, N.B. & Huang, Y. Fractal theory for radar 

target detection as well as its application. Publishing 
House of Electronics Industry, Beiijng, 2011.

16. Xie, H.P. & Xue, X.Q. The mathematical basis and method 
of fractal application. Science Press, Beijing, 1997.

17. Shi, B.; Wang, X.P. & gai, M.J. The introduction and 
application of functional analysis. National Defence 
Industry Press, Beijing, 2009.

18. Packard, N.H.; Crutchfield J.P. & Farmer J.D. geometry 
from a time series. Phy. Rev. Lett., 1980, 45(9), 712-716.
doi: 10.1103/PhysRevLett.45.712

19. Mazel, D.S. & Hayes, M.H. using iterated function 
systems to modell discrete sequences. IEEE Trans. Signal 

Process., 1992, 40(7), 1724-1734.
doi: 10.1109/78.143444

20. Zhou, Y.F.; Yip P.C. & Leung H. On the efficient prediction 
of fractal signals. IEEE Trans. Signal Process., 1997, 
45(7), 1865-1868.
doi: 10.1109/78.599962

21. Bozdogan, H. Model selection and Akaike's Information 
Criterion (AIC): The general theory and its analytical 
extensions. Psychometrika, 1987, 52(3), 345-370.
doi: 10.1007/BF02294361

22. Duda, R.O.; Hart, P. E. & Stork, D. G. Pattern classification. 
Ed. 2nd. John Wiley and Sons, New York, 2001.

acKnowLEdgEMEntS
Authors would like to thanks Professor Huang Jianjun 

at Shenzhen university for offering the experiment data,  
the National Natural Science Foundation of China (grant: 
61561004, 61331021, 61271107), the Education Department 
of Jiangxi Province (grant: gJJ14658) and the 2015 Bidding 
Project of gannan Normal university (15zb04) for the support 
to this research work. They also wish to thank the anonymous 
reviewers for their help in improving this paper.

contrIbutors

Mr Q.S. Li, has received his BSc from Tongji university, 
Shanghai, in 1998, MSc from Beihang university, Beijing, in 
2004, and PhD from Shenzhen university, Shenzhen, in 2013. 
Currently working in the School of Physics and Electronic 
Information, gannan Normal university, ganzhou, China. His 
fields of interests includes: Intelligent information processing, 
automatic target recognition and tracking.
In the current study, he has contributed  in  the self-affine 
fractal modelling of aircraft echoes and target classification 
experiments.

Prof. J.h. Pei, has received his BSc from from Beihang 
university, Beijing, in 1989, MSc and PhD from Xidian 
university, Xi’an, in 1994 and 1998, respectively. Currently 
working in the College of Information Engineering, Shenzhen 
university, Shenzhen, China. His fields of interests includes: 
Image and video processing and analysis, pattern recognition, 
fuzzy information processing, etc.
In the current study, he has contributed  in the theory of self-
affine fractal analysis.

Ms X.Y. Liu, has received her BSc and MSc from Nanchang 
university, Nanchang, in 2001 and 2005, respectively. Her fields 
of interests includes: Embedded systems, communications and 
information systems, etc.
In the current study, she has contributed  in the data processing 
and graphics landscaping.


