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1. IntroductIon
Radio frequency micro-electro-mechanical-system (RF 

MEMS) is an emerging sub-area of MEMS technology which 
offers wide range of benefits. It enables radar, sensors and 
broadband communication devices for various military and 
commercial applications1-2. MEMS switch promises to combine 
useful properties of both mechanical and semiconductor 
switches e.g. low loss and DC power consumption, reduced 
size, weight and cost3. RF MEMS switches or varactors are 
the essential blocks of RF MEMS phase shifter4-6. Employing, 
capacitive switches in phase shifters can considerably reduce 
losses, size, therefore scaling down the area of phased array 
antenna where thousands of phase shifters are mounted7-14. 

Depending on the application, design approach of phase 
shifter is classified into two categories viz., analog and digital. 
In analog approach, continuously varying phase shift is obtained 
from 0 to 360° and fabricated using MEMS varactors while in 
digital approach, discrete set of phase delays are obtained and 
fabricated using MEMS switches14. 

The various ways of implementing analog phase shifter 
have been reported in literature. Barker et al.15 reported 
capacitance ratio of 1.15 with pull-in of 26 V. The measured 
phase shift/decibel loss, insertion, and return loss were 70°/dB 
(75 GHz to 110 GHz), -2.5 dB, -11 dB at 94 GHz, respectively. 
N. Scott Barker17 discussed capacitance ratio (1.5) and phase 
shift (360°) with  insertion loss: -4 dB at 60 GHz and -5 dB 
at 100 GHz. W Palei11 presented true time delay (TTD) phase 
shifter for Ku band with measured return loss (S11): -15 dB and 
average loss: -2.3 dB/phase shift of 250° at 20 GHz. 

According to the literature reviewed, there is a major 

issue of controlling bridge height by regulating voltage 
precisely which provides the maximum capacitance ratio of 
1.5:1(electrostatic force at center of MEMS bridge) before 
snap down with a very small phase shift. But for commercial 
applications, high reliability and better response are prime 
concerns. To mitigate above issues, a new concept of stopper is 
introduced in the design. 

2. desIgn of MeMs brIdge
Amongst various actuation mechanisms, electrostatic 

actuation technique is often preferred due to almost zero power 
consumption, small electrode dimensions, ease of fabrication 
steps and better compatibility with IC fabrication techniques. 
The reliability of an analog phase shifter primarily depends on 
the actuation of MEMS bridge which works as a varactor. In 
terms of performance, the tuning range of MEMS bridge must 
be within the limit of instability. Most of the phase shifters 
available in literature have been designed using fixed-fixed 
beam, where force is applied at the center15-16. In this case, 
the bridge can travel maximum ≈33.33 per cent of its initial 
height, resulting in a maximum capacitance ratio 1.49:1. In 
order to increase maximum travel range and capacitance ratio, 
force can be evenly distributed along the ends of the beam as 
shown in Fig. 1. Accordingly, the maximum travel range and 
capacitance ratio is increased to ≈ 43.33 per cent and 1.75:1 
respectively as shown in Fig. 2(a). 

The major drawback of analog phase shifter is instability 
of MEMS bridge. To solve this issue, stopper has been 
incorporated in the mechanical design of unit cell for preventing 
a snap down of the bridge as shown in Fig 1.
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The design parameters of MEMS bridge are mentioned 
in Table 1. Electromechanical simulations were performed on 
3D FEM based software tool i.e., CoventorWare©. Initially, the 
MEMS bridge is at 3 µm which becomes instable at 1.70 µm 
from bottom on applying maximum operating voltage of 16 V 
as shown in Fig. 2(a). Thus for achieving height of 1 µm from 
bottom of the transmission line is next to an impossible task as 
MEMS bridge snaps down at 1.70 µm height. 

Unlike the switch, the two floating stoppers are designed 
and placed adjacent to the central capacitive area at a distance 
of 10 µm as shown in Fig 3. This creates a smaller gap of 
1µm between the MEMS bridge and central capacitive area 
of transmission line as shown in Fig 4. And this way MEMS 
bridge acts as a varactor by traveling maximum range (66.66 
per cent of its initial height) with high capacitance ratio (2.95: 

1). Finally, deflection and capacitance ratio is increased by 1.54 
and 1.68 times, respectively, compared to the design without 
stopper.

figure 2. MeMs bridge instability: (a) without stopper and (b) improved by incorporating stopper.

figure 3. design of MeMs bridge without stopper and with stopper.

table 1. summary of design parameters of MeMs bridge for 
analog phase shifter

design parameters Values 

Capacitive area 150x110 µm2

Total bridge length 580 µm

Bridge thickness 1.5 µm

Dielectric thickness(SiO2) 0.1 µm

Bridge initial gap 3 µm

Stopper height from transmission line 1 µm

figure 1.  Proposed design of unit cell with stopper.

VOLTAGE (volts) VOLTAGE (volts)
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The simulated resonance frequency is 8.3 KHz. The 
calculated switching time is 56 µs for an applied voltage of 20 
V from Eqn (1).

0

3.67 p
s

s

V
t

V
 

=  ω                                                              
(1)

where st is the switching time, 0ω  resonant frequency,  pV  is 
the pull-in voltage, sV is the applied voltage.

3. unIt ceLL oPtIMIsAtIon
The design of DMTL phase shifter requires specification: 

dielectric constant of substrate, characteristic impedance of 
unloaded transmission line and Bragg frequency. One of the 
advantages of using silicon as substrate is that the phase shift    
( ∇ϕ ) is directly proportional to effε as shown in Eqn (6). The 
other advantage of using silicon substrate is that fused quartz 
or glass substrate offers poor thermal properties as compare 
to silicon substrate. For example: silicon substrate has 111 
times higher thermal conductivity compare to fused quartz18.  
Therefore, DMTL phase shifter on Si substrate gives more 
phase shift per unit length as well as improves power handling 
capability compared to quartz substrate18. 

Three types of unit cells are designed on silicon substrate 
with different characteristic impedances of 70 Ω, 65 Ω and 50 Ω, 
where (W+2G) are 410,330,196 µm, respectively. The design 
parameters of unit cells are shown in Table 2. Electromagnetic 
simulations were performed on 3D FEM based software tool 
i.e. High Frequency Structural Simulator© (HFSS). The length 

of each unit cell is 800 µm. It is necessary to maintain loaded 
line impedance within the range of 60 Ω – 42 Ω to maintain 
the return loss below -10 dB. The simulated results of each unit 
cell are shown in Fig. 5. unit cell-I has better performance than 
others in term of low insertion loss – 0.56 dB and return loss 
-14.18 dB with 15.76° phase shift at 17 GHz. 

The other parameter, gap variation has a significant effect 
on desired phase shift; higher gap difference in two states gives 
higher phase shift. The two simulations have been carried out 
for all three CPW impedances for optimising maximum gap 
differences of 3 µm – 1 µm and 3 µm – 0.5 µm. The losses 
degrade at 3 µm – 0.5 µm as shown in Fig. 6. Thus, the 
maximum optimised gap is 3 µm – 1 µm for minimum loss in 
a single unit cell. 

4. resuLts And dIscussIon
4.1 Analytical Modelling

The DMTL phase shifter based on CPW configuration 
comprises of a high impedance (> 50 Ω) transmission line and 
loaded periodically with MEMS bridges (work as varactor). 
The distributed transmission line is connected to 50 Ω input 
and output lines for testing purpose. By changing distributed 
capacitance of the MEMS bridge results in variation in phase 
velocity, lv  , of the electromagnetic wave on the loaded CPW, 
as given by relation:

1
[ ( / )]l

u u MEMS

v
L C C s

=
+                                             (2)

where uL and uC  are inductance per unit length and capacitance 
per unit length of the unloaded CPW, respectively19-20. MEMSC  
is the variable capacitance between MEMS bridge and 
transmission line and s  is the periodic spacing between the 
MEMS bridges.

2
0 ,u uL C Z=                                                                      (3)

0

eff
uC

cZ
ε

=                                                                      (4)

where 0Z is the characteristic impedance of unloaded 
transmission line. effε  is the effective dielectric constant of the 
unloaded transmission line i.e. CPW.

 The loaded line impedance, lZ , is given by relation:

[ ( / )]
u

l
u MEMS

L
Z

C C s
=

+
                                               

(5)

figure 4.  Actuation at pull-in without stopper and with stopper.

design parameters unit cell I unit cell II unit cell III

Co-Planar waveguide 
(CPW) impedance

70 65 50

W+2G (µm) 410 330 196

Bragg frequency (GHz) 2f0 1.8 f0 1.7 f0

Number of switches 1 1 1

unit cell length (µm) 800 800 800

S12 @ 17GHz -0.56 dB -0.61 dB -0.68 dB

S11 @ 17GHz -14.18 dB -12.37 dB -10.69 dB

Phase shift(º) 15.76 14.80 13.57

Zlu-Zld (Ω) 58-44 53-42 43-34

table 2. summary of design parameters of unit cells for analog 
phase shifter
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figure 5. simulated results of three types of unit cell at 1µm gap: (a) insertion loss (db), (b) return loss (db), (c) phase shift, and 
(d) unit cell of phase shifter.

figure 6.  simulated results of three types of unit cell at 0.5 µm gap: (a) insertion loss and (b) return loss.
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From Eqn. (5) by increasing, / ,MEMSC s the phase velocity 
will be decreased by keeping all parameters constant. If 1lv  
and 2lv  are the phase velocities at two variable gaps, then 
the differential phase shift ∇ϕ  in degree per meter assuming 

1 2l lv v>  is

2 1

1 1360 ( )deg/
l l

f meter
v v

∇ϕ = − ,   
 

Or

0

2 1

360 1 1( )deg/ ,eff

l l

fZ
meter

c Z Z
ε

∇ϕ = −
                   

(6)

where f  is the operating frequency. 1lZ and 2lZ  are the loaded 
line impedances at two variable gaps. 

The periodic configuration has maximum frequency limit 
due to the Bragg reflection. 

1
[ ( / )]Bragg

u u MEMS

f
s L C C s

=
π +

                                  (7)

( ( ))u u MEMS
effl

c sL sC C
s

+
ε =                                        (8)

where, Braggf , is the bragg frequency at which no power is 
transmitted through transmission line because loaded line 
impedance goes to zero. efflε  is the effective dielectric constant 
of the loaded line.

4.2 3-d feM simulation
The unloaded line impedance of 70 Ω is optimised with 

an effective dielectric constant of 5.98 for phase shifter. Fig. 7 
shows the simulated results of insertion (S21) and return loss 
(S11) at 3 µm (at 0 bias voltage) and 1 µm gap (at 16 bias 
voltage). It is seen from the return loss that the S11 at 1 µm gap 
has more closely spaced nulls signifying that the transmission 
line is electrically longer than 3 µm gap. Since the physical 
length of the DMTL is not changed from Eqn (2) increasing 

/ ,MEMSC s the phase velocity decreases; keeping all parameters 
constant, as expected. According to Eqn (5) the upstate 

figure 7. simulated results of analog phase shifter with 6 unit cells (a) insertion loss, (b) return loss, (c) phase shift versus frequency, 
and (d) phase shift vs actuation voltage.
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characteristic impedance is 56.81 Ω and in down state 41.12 
Ω. However, the loaded line impedances ( 56.39luZ = Ω  and 

44.33ldZ = Ω ) are determined from the first peak in return loss 
at 4.3 GHz from Eqns (9) and (10). At 4.3 GHz frequency, 
the loaded transmission line is performed as a quarter-wave 
transformer. The smaller variation in loaded line impedance is 
due to an effect of the feed line at both ends of the distributed 
transmission line which adds small inductance.

11
0

11

1
1lu

SZ Z
S

+
=

−                                                             
(9)

11
0

11

1
1ld

SZ Z
S

−
=

+
                                                          (10)

where, 0Z , luZ and ldZ are unloaded and loaded (in both 
states) line impedances. 11S  is return loss. The calculated 
effective dielectric constant for the loaded transmission line 
with 40buC fF=  is 9.08efflε =  from Eqn (8). The effective 
dielectric constant ( 9.79efflε = ) is also confirmed from the 
adjacent nulls in the simulated 11S . 

As seen from the Fig. 7(c), phase shift ( ∇ϕ ) increases 
linearly with frequency as expected for a true time delay type 
phase shifter having 2.95rC = . There is deviation from the 
linearity at approximately 30 GHz which is a result of move 
towards the Bragg frequency (calculated Bragg frequency 
is 30.69 GHz). The maximum simulated phase shift for 6 
MEMS bridges is 88.63º with insertion loss: -1.75 dB and 
return loss: -20.49 dB at 17 GHz. The improved design with 
stopper shows the increased phase shift to 88.63° from 37.75° 
(one without stopper) as shown in Fig. 7(d).  The phase shift 
versus capacitance ratio is as shown in Fig. 8. The parameters, 
extracted from analytical modelling using Eqns (2)-(8) are 
shown in Table 3.

Figure 9. Proposed process flow of RF MEMS DMTL analog phase shifter.

figure 8.  Phase shift versus capacitance.

design parameters calculated simulated
Characteristic impedance 70Ω --

Effective dielectric 
Constant of unloaded line

5.98

Bragg frequency (GHz) (1.8 f0) 30.69 GHz (1.76 f0) 30 GHz

Zlu-Zld(Ω) 56.81 & 41.12 Ω 56.39 & 44.33 Ω

Effective dielectric 
Constant of loaded line

9.08 9.79

Number of switches 6 6

S12 @ 17GHz -- -1.75dB

S11 @ 17GHz -- -20.49dB
Phase Shift (°) 85.71° 88.63°

table 3. summary of calculated and simulated parameters 
for analog phase shifter
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5. ProPosed fAbrIcAtIon Process fLow
The fabrication process of DMTL phase shifter is similar 

to symmetric toggle switch4-5, begins with 250 µm - 300 
µm thick high resistivity (>5 kΩ-cm), p-type <100> single 
side polished silicon substrate. The relative permittivity of 
substrate is 11.9 and proposed process flow is shown in Fig. 
9. Silicon wafer is preferred for its process compatibility with 
semiconductor fabrication techniques. Initially, 1 µm thick 
thermal oxide (to reduce cpw/electrical losses and provides 
better Q at higher frequencies) is followed by patterning of 
electrode and stopper of poly-Si thin film (deposited using low 
pressure chemical vapour deposition (LPCVD) technique and 
doped with n-type dopants). Plasma enhanced chemical vapor 
deposition (PECVD) oxide, which acts as a passivation layer, 
is deposited to pattern contact holes. After this, underpass area 
(Ti/TiN/Al/Ti/TiN) of transmission line is patterned. Further 0.1 
µm dielectric (SiO2) is deposited using PECVD. Sacrificial 
layer (3 µm) is patterned for metallic structures such as fixed-
fixed beam, cantilevers and other structures. The sacrificial 
layer is then covered with seed layer (Cr/Au ≈10/30 nm). The 
subsequent lithography defines mold of (+) ve photo resist for 
electroplating. CPW and bridge, both are incorporated in same 
mask to reduce mask levels. Finally mold is removed in acetone, 
Au/Cr seed layer is etched out in selective Au and Cr etchants. 
Later sacrificial layer of hard photoresist is removed in mild 
piranha, further released in critical point drying (CPD).

6. concLusIon
The reliability of an analog MEMS phase shifter is 

improved by incorporating stopper in the mechanical design of 
MEMS bridge. The deflection and capacitance ratio is increased 
by 1.54 and 1.68 times, respectively, compared to the design 
without stopper. The maximum operating voltage is 16 V. The 
phase shifter is designed with insertion and return loss -1.75 dB 
and-20.49 dB, respectively with 6 MEMS bridges at 17 GHz.  
The simulation results are in close match with analytical 
modelling.
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