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NOMENCLATURE
B  Blending function
Cμ  Constant in the turbulence model
e, f, g  Blending functions 
k  Turbulent kinetic energy
p 	 Pressure	of	the	fluid
t Time
u  Velocity 
U  Time-averaged velocity
W  Duct width
x  Coordinate
ε		 Rate	of	dissipation	of	turbulent	kinetic	energy
ρ		 Density	
μ		 Viscosity	
Subscript
i  ith control point or coordinate axis
j  Coordinate axis
k Coordinate axis
t  Turbulent
Superscript
′		 Fluctuating	component
n Number of control points

1. INTRODUCTION
Optimal shape design problems have been a topic of 

research for a quite long time due to their application in many 
engineering	 fields.	 Nowadays,	 optimisation	 has	 become	 an	
integral step of the design process and has to cater to the needs 

of reducing the initial and operating costs within the restrictions 
in available infrastructure while meeting the requirements of 
process, safety and environment, etc. There has been a renewed 
and tremendous interest in shape optimisation in the recent 
years1,2, in particular, shape optimisation of curved ducts has 
attracted many researchers due to their ubiquitous presence in 
pipe	fittings,	air	intakes,	diffusers,	turbine	and	blade	passages,	
cyclones, headers, etc1-8. 

The focus of the present work is on the optimisation of 
pipeline layout in process industries where the piping has to 
undergo sudden changes of direction due to on-site constraints. 
A simple layout can be made by providing sharp corners to 
go around the obstacles. A more optimal solution is one 
which has a gentle curvature to minimize the pressure losses. 
However,	finding	 the	optimal	 curvature	 is	 not	 simple	due	 to	
the	complicated	nature	of	 the	flow	 through	a	curved	duct9,10. 
While the effect of a bend in simple cases is well-understood, 
the	flow	development	within	 the	bend	depends	on	a	number	
of factors and general thumb rules cannot be developed to 
determine the curvature for minimizing the pressure drop. A 
methodology of design must be developed which can be used 
to	 obtain	 case-specific	 solutions	 taking	 account	 of	 the	 flow	
and geometric features of the case. In recent years, advanced 
flow	simulation	techniques	incorporating	computational	fluid	
dynamics	(CFD)	principles	are	being	used	increasingly	for	the	
design	and	analysis	of	fluid	dynamic	systems6,11. A number of 
approaches have been proposed in the literature for a systematic 
shape	optimisation	of	flow	through	curved	ducts;	these	include	
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black-box algorithms including a multi-objective optimiser, 
adjoint methods for the calculation of sensitivities and 
topology optimisation for the optimal exploitation of available 
design space. These have been used to obtain optimised bend 
shapes involving a wide variation in cross-sectional area of the 
duct5. This may not be acceptable in a wide range of process 
industry applications where constraints related to on-site 
erection of piping necessitate maintaining nearly a constant 
shape of the cross-section in the bend. With this constraint, 
the problem of optimal linking two pipes reduces to one of 
finding	the	optimal	curvature	of	the	connecting	pipe	or	more	
specifically	 the	 shape	 of	 its	 centreline.	 a	 number	 of	 shape	
parameterisation techniques and shape deformations have been  
proposed  in  the  literature2,12		including		Bézier,	B-spline,	and	
non	uniform	rational	B-spline	(NuRBS)	curves	and	surfaces.	
As the present work is concerned with joining two pipes for 
smooth	flow	of	a	fluid	 from	one	 to	 the	other,	 it	 is	necessary	
to	ensure	that	these	curves	are	smooth.	Bézier	curves	possess	
some interesting properties which make them suitable for its 
use in the representation of smooth curves13-15 and hence these 
are adopted in the present study for shape optimisation.

2. PROPOSED METhOD fOR LINKAgE USINg 
BézIER CURvES

2.1 Bézier Curves
Bézier	curves15 are represented by a set of points known 

as ‘control points’. The control over the variation of the shape 
of the curve is carried out by moving the control points which 
then become the design variable for controlling the shape. 
Extension to three dimensions is rather straight forward and 
can be achieved by control points located in 3-D space. A cubic 
Bézier	curve	is	shown	in	Fig.	1.	a	degree	n	Bézier	curve	has 
n+1	control	points.	The	curve	passes	through	the	first	and	the	
last control point and is tangent to the control polygon at those 
end points. Thus, line segments PoP1 and P2P3 are tangents to 
the curve. The curve lies within the convex hull of the control 
points.	The	shape	variation	of	the	Bézier	curve	is	obtained	by	
the	movement	of	the	control	points.	For	a	cubic	Bézier	curve,	
a family of lines can be generated by moving points P1 and 
P2,	as	illustrated	in	Fig.	1.	The	equation	for	a	Bézier	curve	is	
given by
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Here Pi are the locations of the control points.

2.2 Method for generating family of Bézier 
Curves
Authors discussed the proposed method by considering 

the	 use	 of	 a	 Bézier	 curve	 to	 optimally	 connect	 two	 ducts	
resembling the shape of the alphabet N. The two ducts of width 
W are separated 10W apart. The length of the inlet and outlet 

sections is 20W each. The duct axes of the inlet and outlet 
sections do not intersect but overlap for a length of 10W, as 
shown	 schematically	 in	 Fig.	 2(a).	We	 seek	 to	 represent	 the	
centreline	of	the	duct	the	connecting	duct	by	a	Bézier	curve.	
Taking	 advantage	 of	 geometric	 symmetry,	 the	 Bézier	 curve	
can	be	defined	by	the	three	control	points,	namely,	A, B, and 
C	[Fig.	2(a)]	where	C is the midpoint of the line PQ and P is 
situated	at	half	the	distance	of	aX.	Figure	2(b)	shows	a	family	
of lines produced by moving point B. It is proposed that these 
smooth curves can potentially be used to describe the centreline 
of	a	curved	duct	which	joins	the	inlet	and	the	outlet	ducts.	For	
a given centreline path, the duct geometry can be obtained by 
extruding the inlet or outlet duct cross-section. This produces 
thus a curved duct linking the inlet and the outlet duct. The 
pressure	drop	for	the	flow	through	this	curved	can	be	estimated	
by	 usual	CFD	 calculations.	The	 process	 can	 be	 repeated	 for	
several	of	the	possible	Bézier	curves	and	the	best	of	these	can	
be chosen. Alternatively, a formal search algorithm can be used 
to	find	the	best	curve.	

figure 1. Two cubic Bezier curves with four control points (Pi 
and Pi) and control polygons.

figure 2. (a) Scheme for the generation of a family of Bezier 
curves for joining the two non-intersecting co-planar 
ducts and (b) Schematic movement of the third control 
point along a line to generate a family of Bezier curves 
linking the two pipe line segments.

 (a)	
 (b)	



DeF.	 SCI.	 J.,	VOl.	 65,	 NO.	 4,	 July	 2015

302

As can be gathered from the above description, the method 
readily lends itself for automation. The principal advantage of 
the	proposed	method	is	that	it	reduces	the	problem	of	finding	
the optimal curvature to varying one parameter over a well-
defined	 range,	 in	 this	case,	over	 the	distance	aB	(Fig.	2(a)).	
From	the	known	location	of	the	control	points	for	the	optimal	
curve, the shape of the centreline of the connecting duct can be 
readily	evaluated	using	eqns	(1)	and	(2).	The	method	is	quite	
flexible	as	will	be	shown	below.

2.3 Solution Methodology
Finding	the	optimal	linkage	requires	repetitive	and	fresh	

CFD	calculation	for	each	possible	Bézier	curve.	automation	of	
this	process	is	readily	possible	on	commercially	available	CFD	
platforms.	In	the	present	study,	the	CFD	code	FlueNT	is	used	
for	the	solution	of	the	Navier-Stokes	equations	(see	below),	the	
gamBIT	is	used	for	grid	generation	and	maTlaB	is	used	for	
the generation of the centreline and for overall control using 
journal	files	that	contain	gamBIT	and	FlueNT	commands.	
a	 maTlaB	 code	 has	 been	 developed	 for	 the	 continuous	
variation	 of	 the	 control	 point	 to	 define	 different	 centreline	
curvatures	using	Bézier	curves.	In	order	to	automate	the	entire	
process,	 maTlaB,	 gamBIT	 and	 FlueNT	 are	 integrated.	
maTlaB	interacts	with	gamBIT	and	FlueNT	via	operating	
system	through	batch	files	and	the	whole	calculation	runs	in	the	
background7,18. In the present study, the numerical simulations 
have been carried out on a computer with Intel Core i7 processor 
and	8	gB	Ram.

The	flow	field	corresponding	to	a	specific	duct	geometry	is	
obtained by numerically solving the Navier Stokes equations. 
using	 einstein’s	 summation	 convention	 of	 repeated	 indices,	
these can be written in a Cartesian coordinate system as
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(4)
Here	 ρ	 is	 the	 density,	 m  is the viscosity, p is the pressure 
and ui is the velocity component the ith direction. In case of 
turbulent	flow,	the	Reynolds-averaged	Navier	Stokes	(RaNS)	
equations16	are	solved.	Time-averaging	gives	rise	to	Reynolds	
stresses, ' '

i ju u−ρ , where '
iu 	 is	 the	 fluctuating	 part	 of	 the	 ith 

velocity component and the overbar indicates time averaging. 
a	plethora	of	 turbulence	models	are	available;	 in	the	present	
study,	the	turbulent	flow	field	is	calculated	using	the	realizable	
k-ε	model16. In this case, the	Reynolds	stress	terms	are	modelled	
through Boussinessq approach to close the equations:
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where mi is the time-averaged value of the ith velocity component, 
mt is the turbulent or eddy viscosity given by

2

t

kCmm =
ε
																																																																					(6)

The turbulent viscosity is computed by solving the 
transport equations for turbulent kinetic energy (k)	and	its	rate	
of	dissipation	(ε).

3. RESULTS
3.1 Application to a Co-planar N-bend

The	base	case	geometry	of	N-bend	is	shown	in	Fig.	3.	The	
width of each duct is taken to be 0.05 m, the length is 1 m and 
the ducts are co-planar with an overlap region of 0.5 m with 
centreline to centreline separation distance of 0.5 m. The base 
case in which these are connected by a straight section is shown 
in	Figure	 3.	The	 boundary	 conditions	 are	 as	 follows.	On	 all	
walls, a no-slip, zero-velocity condition is applied. A uniform 
air	velocity	of	15	m/s	 (corresponding	 to	a	Reynolds	number	
of	 100000	 based	 on	 duct	 width	 and	 average	 inlet	 velocity)	
is imposed at the inlet and zero-gauge pressure boundary 
condition	is	specified	at	the	outlet.	The	geometry	is	discretised	
using 56000 cells. Second order accurate discretisation schemes 
have been employed and a scaled residual level of 1x10-5 for 
the continuity equations has been used as the convergence 
criterion for the iterative solution scheme. Care has been taken 
to ensure the wall y-plus16 lies within the range of 30 to 100 
except	 in	some	localized	regions	of	flow	recirculation	where	
the wall y-plus is < 30. 

figure 3. Base case geometry of N-bend.

The computed solution has been used to determine the 
pressure drop between the exit of the inlet duct and the entrance 
of the outlet duct for several possible curves. Typically the 
pressure drop has been found to exhibit a unimodal variation 
with increasing distance of the control point from point B along 
the	duct	axis,	as	shown	in	Fig.	4(a)	with	the	pressure	drop	of	
the	optimal	geometry	(225	Pa)	being	significantly	lesser	than	
that	of	the	base	case	geometry	(750	Pa).	The	parameter	value	
corresponding	 to	 the	 lowest	 pressure	 drop	 then	 defines	 the	
optimal	Bézier	curve,	which	is	shown	in	Fig.	4(b).	One	can	see	
that a smooth connecting link has been obtained for this case.

Figure	 5	 shows	 the	 predicted	 velocity	 contours	 for	
different	 cases.	 Figure	 5(a)	 shows	 the	 velocity	 field	 in	 the	
optimal	 N-bend	 case.	 In	 Figs.	 5(b)	 to	 5(d),	 the	 predicted	
velocity in the two regions are compared for the base case, for 
the	 optimal	Bézier	 curve	 case	 and	 for	 a	 non-optimal	Bézier	
bend case. It can be seen that the sharp bend in the base gives 
rise	to	significant	velocity	variation	in	the	bend	regions.	This	
is reduced to some extent by providing smoother bends, as 
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shown	 in	 Fig.	 5(d).	 In	 the	 optimal	 bend	 case,	 which	 shows	
the least pressure drop, the velocity distribution is much more 
uniform	 throughout	 the	domain.	Thus,	 streamlining	 the	flow	
through	shape	optimisation,	achieved	here	using	Bézier	curves	

to	 define	 the	 centreline	 of	 the	 connecting	 duct,	 leads	 to	 the	
lowest	pressure	drop.		The	same	concept	is	illustrated	in	Fig.	6	
where the optimal geometries for three other co-planar bends, 
obtained using the same procedure, are shown. 

figure 5. velocity contours (a) in the optimal bend, and zoomed views of the velocity contours in the two bend regions for (b) the 
base case, (c) the optimal case and (d) a non-optimal Bezier bend case. 

figure 6. Predicted optimal shapes for other co-planar bend cases: (a) a 90° bend, (b) a to 60° bend, and (c) for 90° bends in 
tandem.

figure 4. (a) variation of pressure drop with respect to the location of the control points (Base case pressure drop = 750 Pa) and 
(b) Optimal N bend.

             (a)	 	 	 	 		(b)	 	 	 	(c)	 	 	 				(d)

 (a)	  (b)	

 (a)	  (c)	 (b)	
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3.2 Non-coplanar Ducts
In this case, the inlet and outlet duct axes do not intersect 

and	they	do	not	lie	in	the	same	plane	as	is	illustrated	in	Fig.	7.	
The connecting duct is obviously curved in three dimensions. 
In this case, several possible shapes for the centreline of the 
connecting duct can be generated by moving the two control 
points in the same proportion along the inlet and outlet duct 
axes	 as	 shown	 in	 Fig.	 7(a).	 Considering	 a	 duct	 of	 square	
cross-section with a width of 0.05 m and assuming the air 
inlet velocity to be 30 m/s, calculations have been made for a 
number of possible shapes. The geometry is discretised using 
approximately 680,000 tetrahedral cells and three dimensional 
numerical simulations are performed using a duct having an 
inlet and outlet ducts of length 30W each, diagonal portion 
of the duct of length 1.732 m. The computed variation of the 
pressure drop between the inlet and the outlet with respect to 
the	 position	 of	 the	 control	 point	 is	 shown	 in	 Fig.	 7(b).	 The	
computed	3-D	path	of	the	curved	duct	is	shown	in	Fig.	8.	

Compared to the base case pressure drop of 454 Pa, 
wherein the duct is extended along the edges of the cube until 
they join, one can see that the optimal case gives pressure drop 
of around 290 Pa. It is reiterated that the pressure drop values 
reported here are over the entire length of the simulated duct.

4. MEETINg ON-SITE CONSTRAINTS
When linkage of pipes separated by long distances is 

attempted, a number of other issues arise. Principal among 
these are the need to bypass existing beams and columns and 
the need to anchor the connecting pipe at an intermediate point. 
These constraints can be readily incorporated in the present 
method in the following way.

4.1 Bypassing Existing Columns
The presence of a beam in the pathway of the proposed 

connecting pipe is obviously not admissible. A pathway that 
largely follows the same trajectory but locally takes a detour 
(around	the	obstruction)	may	not	be	optimal	from	a	pressure	
drop	 point	 of	 view.	 given	 that	 there	 are	 several	 possible	
candidate	Bézier	curves	joining	the	inlet	and	the	outlet	ducts,	
one should look for those curves that do not pass close to 
the	obstruction.	Consider	Fig.	9(a)	which	 shows	a	3-D	view	
of the optimal linkage for the case of non-intersecting ducts 
considered	 in	 section	 3.2.	 let	 us	 assume	 that	 there	 exists	 a	
column	 as	 indicated	 by	 the	 vertical	 thick	 black	 line	 in	 Fig.	
9(a).	The	projection	of	the	connecting	pipe	and	the	column	in	
the	 x-y	 plane	 is	 shown	 in	 Fig.	 9(b).	 From	 this,	 one	 can	 see	
that	the	proposed	connecting	line	would	intersect	the	column;	
this	 connection	 cannot	 therefore	 be	 used.	 Figure	 9(c)	 shows	

figure 8. Pathlines coloured by static pressure (Pa) for the (a) 
Base case geometry, and (b) Optimal geometry.

figure 7. Application to the case of non-coplanar ducts: (a) 
generation of a Bezier connecting curve for a non-
coplanar bend, and (b) variation of the pressure drop 
in the connecting duct with the location of the control 
point (Base case pressure drop = 454 Pa).

 (a)	

 (b)	

 (a)	

 (b)	
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the	 trajectory	 of	 another	 Bézier	 curve	which	 is	 close	 to	 the	
optimal	 curve.	 From	 Fig.	 9(d),	 one	 can	 see	 that	 this	 curve	
lies at some distance from the column and is therefore not in 
any danger of intersecting it. Therefore, the connecting curve 
shown	in	Fig.	9(c)	becomes	an	eligible	candidate;	several	such	
eligible curves can be generated by moving the control point 
while	 ensuring	 that	 each	 curve	 is	 sufficiently	 far	 away	 from	
existing beams and columns through appropriate projections 
in	the	normal	planes.	CFD	simulations	of	flow	through	these	
curved ducts can then be carried out to determine the one with 
the least pressure drop. 

4.2 Providing Anchor Support
For	long	connecting	pipes,	one	may	wish	to	use	an	anchor	

support at an existing beam or column. In this case, one can 
look	 for	 a	 connecting	 curve	 which	 passes	 sufficiently	 close	
to the column using the logic described above. Alternately, 
one may wish to use Overhauser curves17	 in	place	of	Bézier	
curves	 to	 represent	 the	 connecting	 duct.	 For	 example,	 if	we	
wish to join two points represented by control points P0 and P3 
smoothly but at the same time the curve need to pass through 
control points P1 and P2, then Overhauser curve is an option to 
do so. Overhauser curve c(t)	is	obtained	blending	two	quadratic	
curves, one passing through control points P0, P1 and P2, and 
the other passing through control points P1, P2 and P3. The 
Overhauser	curve	is	defined	by	the	following	equation,

0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) [0,1]c t f t P f t P f t P f t P t= + + + ∈ 								(7)

where fi (t)	are	blending	functions	and	Pi are control points.
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Figure	 10	 shows	 an	 Overhauser	 curve	 defined	 by	 four	
control points namely P0, P1, P2 and P3 where P0 and P3 are 
fixed	control	points	and	the	curve	is	required	to	pass	through	
P1. Thus, P2	is	the	only	control	point;	by	moving	it	along	the	
line joining the point A and the control point P2 (this line is 
perpendicular to the line joining the control points P1 and P2),	
a family of curves can be generated and the optimal link is 
selected from these family of curves. The optimal curve will 
not only be smooth and continuous, it will also pass through 
points P1 and P2 where it can be securely anchored. 

5. CONCLUSION
In	this	paper,	authors	presented	a	rapid	and	efficient	CFD	

based methodology for optimal interconnection of arbitrarily 
oriented	 fluid	 flow	 ducts	 which	 ensures	 streamlined	 flow	
leading to reduced pressure drop and accommodates on-site 
constraints such as avoiding exists beams and columns or 
making the duct pass close to them to provide anchor support. 
The method, in which the duct cross-section is maintained more 

figure 9. Meeting the constraints of existing columns in the path: (a) 3-D view and (b) and projection on the x-y plane of the 
centre line of the connecting pipe passing through a column, and (c) 3-D view and (d) projection of another Bezier curve 
connecting the same pipes but not passing through the column.

 (c)	  (d)	

 (a)	  (b)	
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or less unchanged, is posed as a single parameter optimisation 
problem	 that	 produces	 smoothly-varying	 centreline	 profile	
represented	by	 a	Bézier	 curve.	The	 efficacy	of	 the	proposed	
method is successfully demonstrated using a variety of case 
studies. The results show that for all the candidate geometries 
considered,	a	streamlined	flow	is	obtained	in	the	interconnecting	
duct	with	significant	reduction	in	the	pressure	drop	compared	
to the base case. 
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