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ABSTRACT

The ultimate objective of radiation research is to link human diseases with the altered gene expression
that underlie them and the exposure type and level that caused them. However, this has remained a daunting
task for radiation biologists to indent genomic signatures of radiation exposures. Transcriptomic analysis of
the cells can reveal the biochemical or biological mechanisms affected by radiation exposures. Predictive
genomics has revolutionised how researchers can study the molecular basis of adverse effects of exposure to
ionising radiation. It is expected that the new field will find efficient and high-throughput means to delineate
mechanisms of action, risk assessment, identify and understand basic mechanisms that are critical to disease
progression, and predict dose levels of radiation exposure. Previously, we have shown that cells responding
to environmental toxicants through biological networks that are engaged in the regulation of molecular functions
such as DNA repair and oxidative stress. To illustrate radiation genomics as an effective tool in biological
dosimetry, an overview has been provided of some of the current radiation genomics landscapes as well as
potential future systems to integrate the results of radiation response profiling across multiple biological levels
in to a broad consensus picture. Predictive genomics represents a promising approach to high-throughput
radiation biodosimetry.
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1. INTRODUCTION

In an escalating alarm about the possible accident or
an attack using radiologic or nuclear devices, several countries
have established an emergency support group to assess
and prioritise needs for a response to such an event. One
such high-priority establishment in the United States is
of new biomarker approach to biodosimetry'. This approach
offers the possibility to measure interactions in a miniaturised,
economic, automated, and qualitative or quantitative way
providing insights into the cellular machinery of diverse
organisms. This application is not only restricted to the
security and military sector but it can also be used in the
fields of medical diagnostics or public health. In a major
radiologic emergency, estimating exposure of doses and
adverse effects would be a daunting task, especially with
the current methods using dosimeters. In recent years,
functional genomics approaches, such as global transcriptomic
profiling, have been developed to simultaneously monitor
changes in gene expression across the whole genome?.
As genome-wide expression signatures have become
increasingly accessible, the quantity of information on
transcriptomic responses to ionising radiation has increased
considerably. While several individual studies have provided
insight into many aspects of radiation response, the variety

of experimental models and dose/time-exposure experiments,
sophisticated data analysis methods, and genomic integration,
are still being developed. Regulating the gene expression
upon ionising radiation is a fundamental mechanism by
which cells employ the information in their DNA. Prior to
high throughput genomics, early DNA damage responsive
genes identified from studies focusing on individual genes,
pathways, or biological processes®*. Such methods were
continued to be adopted as technical advancements has
allowed us to use global genomic expression profiling in
a multi-parametric analysis and statistical and data-mining
approaches have become more advanced®.

2. CURRENT RADIATION GENOMICS LANDSCAPE

With the complete sequencing of the genome and the
availability of commercial platforms, global transcriptomic
analyses have become routine tools. One of the first microarray
experiments, investigating response to ionising radiation
exposure for 4 h after 2 Gy gamma-rays in human cells,
found 1,344 genes in a myeloid cancer cell line®. This
includes approximately 30 novel radiation-sensitive genes
that were never been reported previously. A similar
transcriptomic profiling was employed to detect the potential
biomarkers in peripheral blood exposed to doses between
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0.2 Gy and 2 Gy of gamma radiation’. One of the significant
studies that attempted to find relationship between high
and low doses was carried out by Yin®, et al. The authors
have profiled gene expression signatures of mouse brain
exposed to 0.1 Gy and 2 Gy at 0.5 and 4 h post-exposure
time points. This study has revealed unique genes that
are differentially regulated at low dose but not at higher
dose. An interesting functional study by Wang®, et al.
identified 75 genes as possible contributors to low dose
hypersensitivity in a human lymphoblast cell line after 0.5
Gy irradiation. Gene expression changes were also validated
by RNAI approach by specifically knocking down a gene
called CDHC to investigate its role in cell death at low
doses. Another study by Svensson!®, et al. showed
transcriptomic profiling for defining gene sets of late toxicity
in radiotherapy patients.

Transcriptomic profiling was performed on peripheral
blood lymphocytes of patients with or without late radiation
toxicity. The blood lymphocytes were stimulated to divide
in culture and exposed to 2 Gy x-rays and microarray
analysis were performed 24 h later. Instead of single genes,
set of genes were used to classify the expression profiles.
This result was consistent with those from previous in
vivo studies. Amundson!!, et al. carried out the first
transcriptomic profiling in the NCI-60 cells and they have
identified 22 genes associated with low survival after 2
Gy gamma rays, 14 genes associated with low survival
after 8 Gy, and 25 genes with radiation responses dependent
on wild-type p53. E2F4 and RBL2 are the only 2 genes
that were commonly down-regulated in all the 63 of the
cell lines studied. It has been proposed that these two
genes could be a potential target for radiotherapy. However,
the authors also suggest that the basal gene expression
pattern before irradiation may be a better predictor of
radiation sensitivity. A recent study by Paul and Amundson!?
showed genome-wide transcriptomic signatures for radiation
biodosimetry. This approach could provide dose estimation
as well as adverse risk assessment. Human peripheral blood
from 10 healthy donors was irradiated ex vivo and genome-
wide expression analysis approach was applied on both
6 h and 24 h after exposure. Microarray analysis revealed
74-gene signature that distinguishes between four radiation
doses (0.5 Gy, 2 Gy, 5 Gy, and 8 Gy) and controls. While
genome-wide transcriptomic profiling has proven to be
valuable in the prediction of biomarkers of radiation exposure,
one must recognise that transcriptional changes do not
necessarily correlate with protein expression. To elucidate
pathogenesis of disease, it is important to know the genes
and the protein involved. The application of biological
network analysis has allowed to integrate literature-based
analysis for the generation of experimentally feasible
hypotheses in radiation biology'* 4.

3. PROPOSED MODEL

While several studies revealed the fine details of both
high-dose and low-dose specific transcriptional responses
to ionising radiation, a consistent broad consensus picture
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remains indefinable. There is huge amount of data generated
by the radiation genomics studies and it is important to
incorporate such information into concise and meaningful
models of radiation response profiling across multiple biological
levels. The purpose of the proposed model would be to
confirm and assess sudden/accidental radiation exposure
in the shortest possible time frame. This can be achieved
by the following:

(i) The management of a large microarray data set in a
coordinated and integrated manner.

(it) Performing feature extraction and dimensionality reduction
to find specific genes and/or combinations of genes
indicative of exposure to a specific radiologic or nuclear
agent.

(iii) Designing a classifier that can determine if a cell has
been exposed to a known agent and dose.

The condensed platform should cover information on
a particular agent (for example, radiation) and its dose,
mechanism of action, gene networks, pathways, and any
kind of radiation genomics data that is available. It is also
important to make possible correlation of existing results
obtained from transcriptomic, proteomic, and metabolomic
profiles. Data generated from omics technologies in the
context of dose, time, target tissue, and phenotypic severity
across a range of species, from yeast, to nematode, to
human, will provide the comparative information needed
to assess the severity of exposure. As human risk estimation
is important, the in vitro assays corresponding to the key
processes being monitored in vivo will enable the validation
and quantitative relationship between assay results and
any particular in vivo system'.

Similar integrated approach has been used by
pharmaceutical companies, for instance, Iconix’s DrugMatrix.
The DrugMatrix application possess data sets for the systemic
effects of hundreds of drugs on different rat tissues and
it has been claimed by them to have potential for the
identification of toxicities of new chemical entities's-!”.
With the Iconix’s ToxFX application, one can submit gene
expression data and predict toxicological assessment of
the test compound. However, there are several other possible
genomic signatures that might be used including epigenetic
patterns, microRNA profiles, disease associations, protein
expression and metabolite profiles. Such signatures should
be generated from high throughput screening and these
will provide strong explanation for observed findings. Unifying
knowledge from public data repositories such as ArrayExpress,
Gene Expression Omnibus (GEO), Gene Expression Atlas,
Oncomine and other existing literatures will provide a
comprehensive compendium. These mentioned areas should
be explored to advance the efficacy and accuracy of integrated
system to facilitate advancements:

The proposed model (Fig. 1) will have the following
salient features:

*  Comprehensive modules like epigenetic and miRNA
profiles along with transcriptomic profiles, since epigenetic
factors and miRNA are increasingly associated with
a variety of disease pathogenesis.
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Figure 1. Schematic representation of integrated ionising radiation knowledge base.
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Figure 2. Principle component analysis of transcriptomic profile of human peripheral
blood lymphocytes following exposure to ionising radiation.
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* A wide spectrum platform to assess adverse effects
in major organs and species using different mammalian
cell culture sources.

*  Cross-module integration to assess severity of damage
and understand the underlying mechanism of clinical
end points.

However, the proposed model does have its own
limitations. Conceivably, a large number of parameters
would need to be optimised for each perturbation, including
cell type, agent, dose, and time.

Genomic analysis in radiation biology provides an
opportunity to change and improve the way it is currently
investigated. In an ongoing study, the authors have employed
an integrated approach as mentioned in the model (Fig.
1). Along with the conventional end points such as cytogenetic
markers, gene expression profiling of irradiated blood samples
was also done for biomarker identification. An example of
such data is shown in Fig. 2, where differential gene expression
profiling is shown for human blood lymphocytes irradiated
ex vivo to different doses of gamma radiation at 2 h and
24 h post-exposure. Currently, the authors are performing
thorough analysis of this data to identify potential gene
signatures following irradiation. The identification of ionising
radiation response markers through the sensible use of
genomics not only helps in predicting exposure dose and
time , but also promises more accurate diagnosis and risk
assessment, leading to more precise prognosis and new
therapeutic interventions'®. As the accessibility of methods
for obtaining complete high-throughput measurements of
RNA continues to increase, more information on genome-
wide responses to ionising radiation will become available.
It is important to integrate the results across biological
levels to build models that can describe the underlying
mechanism for radiation responses (Fig. 1). Such a model
would allow prediction of clinical end points to a radiation
exposure challenge, thus enabling personalisation of treatment
regimens or radiation risk estimation.

The schematic representation (Fig. 1) depicts various
sources of transcriptomic knowledge base. The source
includes known ionising radiation exposure dose/time frames,
transcriptomic and microRNA profiling signatures, clinical
end points as well as biological data from literature. Any
ionising radiation exposure profiles can be queried against
the knowledge base for identifying time/dose frames, type
of agent and risk estimation.

The representation (Fig.2) indicates the principle
component analysis based clustering and sub-clustering
of the various data points including number of donors
(AK, AL, B, H & S), doses (0, 0.1, 0.25 and 0.5) and post-
irradiation time points (2 h and 24 h).
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