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1. INTRODUCTION
The detonation of a nuclear device through either

military or terrorist action would lead to a mass-casualty
scenario involving victims with varying degrees of exposure
to ionising radiation.1,2 Victims exposed to high doses of
ionising radiation will present with the signs and symptoms
of various degrees of acute radiation syndrome (ARS).
ARS describes three distinct dose-dependent syndromes:
hematopoietic, gastrointestinal (GIS), and the central nervous
syndrome (CNS); CNS being the most severe. Prognosis
for victims who have received a gastrointestinal or CNS
dose, even with supportive care, is poor. Moderate exposure
(2 to 4 Gy) will lead to the more medically manageable
hematopoietic syndrome, characterised by depletion of
hematopoietic stem cells (HSC) in the bone marrow3.

Over the last 30 years, the expected outcome for accidental
exposure to high doses of ionising radiation has been
very poor4. For radiation-induced neutropenia, often observed
in the accidental-exposure scenario, currently there is only
one treatment protocol. There are two components to this
protocol: aggressive supportive care, and the administration
of granulopoietic cytokines as soon as possible. There
is a substantial preclinical database demonstrating the
effect of these growth factors in stimulating granulopoiesis
and survival after lethal doses of radiation; however, the
outcome is far from satisfactory. Various investigators
have been evaluating combined regimens of different cytokines
in experimental models5.

Development of countermeasures to ionising radiation,
both radioprotectants and mitigators, has been identified

by the US Department of Homeland Security as the highest
priority in preparation for a terrorist attacks6. Currently,
there are no suitable countermeasures against nuclear/
radiological hazards for military or civilian personnel, other
than the limited hazard of internalised radioisotopes. Any
radiation exposure can significantly influence operations
of our military, national guards, and first responders. The
problem has become more acute in recent times given the
unpredictable nature of attacks. The US Department of
Defense, as indicated in a current �Defense Technical
Objective� that lists developing medical countermeasures
to radiation exposure as a top priority and cites both early
and late occurring health effects as major concerns, has
recognised this deficiency. The US Army Qualitative Research
Requirements rank and prioritise these radiation exposure-
associated health effects as being very important. Furthermore,
the US Navy has identified �enhanced treatment regimens
for radiation injuries� and protection against radiation
injury as priority needs. These concerns reinforce the
urgent need to develop an appropriate modality to sustain
the war-fighting capabilities of our military. Strategically,
first responders and medical providers should have an
array of radiation countermeasures at their disposal7. With
this in mind, considerable progress has been made in the
development of radioprotectants8,9. There are several radiation
countermeasures at different stages of development10-14.
In fact, some potential candidates have been given
investigational new drug (IND) status by the Food and
Drug Administration (FDA). Due to the unpredictable nature
of ionising radiation exposures, therapies may prove to
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be more useful to medical providers9,15-17.
The human hematopoietic system is highly susceptible

to radiation injury. During any ionising radiation exposure
scenario, a majority of victims will be exposed to a sufficient
dose to possibly impair but not entirely ablate hematopoietic
(bone marrow) function. As such, these victims would
likely recover from their injuries but would have faced a
period of 30�60 days during which they would have difficulty
fighting infections, uncontrolled bleeding and anemia2.
Therefore, in order to keep these compromised individuals
alive, substantial supportive care must be provided, at
least to the point of partial recovery of their hematopoietic
system.

Effective post-exposure treatments are critical as these
serve to broaden the utility of first responders for the
effective rescue and salvage of the more critically injured
victims of a given radiological disaster. Acute ionising radiation
injuries are managed by treating the developing symptoms
with blood transfusions, electrolytes, and antibiotics. If the
estimated exposure is substantial (e.g., 2 Gy or more) with
markedly severe cytopenias (lymphopenia), it is recommended
that cytokine therapy be commenced shortly after exposure18,19.
For patients who do not respond to cytokine therapy, the
transplantation of HSC remains an option20,21.

2. USE  OF  PROGENITORS  IN  RADIATION
CASUALTIES
Weissman and colleagues first isolated a population

of highly enriched mouse HSC through extensive phenotypic
cell surface analysis and in vitro and in vivo functional
assays for stem cell activity22. Additional investigations
have shown that the HSC population is functionally
heterogeneous, which comprised a lineage of cells
demonstrating a continual loss of self-renewal. The long-
term reconstituting HSC (LT-HSC) provide life-long
hematopoiesis, ultimately giving rise to mature cells of all
lineages. This is the only hematopoietic stem or progenitor
cell that durably engrafts, and is the functional component
in bone marrow transplantation.

Directly downstream of the LT-HSC in the hematopoietic
maturation pathway are transiently reconstituting HSC
with identical multilineage potential but which possess
little or no self-renewal capacity23. These are termed short-
term reconstituting HSC (ST-HSC) and multipotent progenitors
(MPP). While these HSC provide only a transient repopulating
ability, these are equally radioprotective when myeloablation
is not complete23.

The earliest branch points between the lymphoid and
myelo-erythroid lineages are defined as the oligopotent
progenitors; the common lymphoid progenitor (CLP) and
the common myeloid progenitor (CMP). Like the HSC,
both the CLP and CMP have been isolated through techniques
that use prospective identification via cell surface markers,
flow cytometry, and an array of functional assays24,25.

From the CMP, the myelo-erythroid lineages are further
defined by discrete progenitors: the granulocyte/macrophage
progenitor (GMP) and the megakaryocyte/erythrocyte

progenitor (MEP). None of these cells (the CLP, the CMP
and their downstream progenitors�GMP, MEP) possesses
extended self-renewal ability. However, progenitor cells
are capable of partially restoring functional hematopoiesis
for a limited period of time26-28. A combination of CMP/
GMP isolated from the bone marrow has been shown to
protect myeloablated mice from otherwise lethal doses of
pathogenic fungus or bacteria in syngeneic and allogeneic
mouse models26,29,30. Furthermore, purified populations of
CMP or MEP but not GMP protect lethally irradiated congenic
mice from death in a dose-dependent manner28.

Mice receiving a minimal lethal dose of radiation typically
die within 12-18 days from bone marrow failure. CMP and
MEP purified from mouse bone marrow were found to
protect these mice for this critical period post-irradiation28.
All mice surviving for 30 days went on to survive longer
than 6 months and possessed only host-derived hematopoiesis
after 30 days. These findings illustrate that if a transient
bridging therapy is delivered providing needed granulocytes,
red blood cells, and platelets during the critical period of
bone marrow failure, host HSC surviving radioablation
may provide recovery as a result of functional hematopoiesis.

On the molecular level, much is being learned about
signals that regulate self-renewal, proliferation, and
differentiation of hematopoietic stem and progenitor cells31,32.
Murine CD117+ (or cKit+) lineage negative cells are indeed
multipotential and primitive in nature, with strong repopulating
and self-renewing capacities, as are the equivalent CD34+

lineage negative cells in humans, and are used to quantitate
stem cell content in transfused blood/marrow volumes.
Because of the complex protein and cellular interactions
involved, identification of the preferred mobilisation method
requires assessment of the qualities of cells mobilised
with different agents.

3. MOBILISATION  OF  PROGENITORS  BY
GRANULOCYTE  COLONY  STIMULATING
FACTOR

Colony-stimulating factors (CSF) are a family of
glycoproteins that control the functional activity, survival,
proliferation, and differentiation of myeloid hematopoietic
cells33 (Fig. 1). These cytokines are involved at various
stages of the proliferation and differentiation processes,
from the proliferation and survival of the pluripotent stem
cells to the final differentiation and mobilisation of mature
granulocytes and monocytes from the marrow to the blood.
Commercially available forms of  G-CSF include filgrastim,
an Escherichia coli-derived recombinant protein, and
lenograstim, a glycosylated form of G-CSF produced in
Chinese hamster ovary cell lines34.

Hematopoietic stem and progenitor cells normally reside
in the bone marrow but can be rapidly released into the
peripheral blood in response to a wide variety of stimuli35.
Mobilisation of stem cells can be so effective that a sufficient
number of cells can be harvested for use in stem cell
transplantation. In allogeneic stem cell transplantation, G-
CSF-mobilised peripheral blood stem and progenitor cells
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now are replacing marrow-derived hematopoietic stem and
progenitors as a stem cell source36. Because of the ease
with which blood stem cells can be obtained, and because
of their potentially superior engraftment characteristics
compared with marrow-derived stem cells, at present most
stem-cell transplantations in human beings are performed
using blood-derived grafts37. The main advantages of using
peripheral blood progenitor cells in place of bone marrow
in clinical transplantation protocols include the more rapid
hematopoietic recovery of transplanted recipients, the ability
to collect the hematopoietic graft less invasively, and the
feasibility of harvesting the graft from patients with bone
marrow fibrosis38.

Previous studies have shown that the administration
of hematopoietic growth factors, either alone or in combination
with cytotoxic drugs, efficiently mobilises hematopoietic
progenitors from bone marrow39. Although several growth
factors are capable of inducing mobilisation of hematopoietic
progenitors, G-CSF at present is one of the most efficient
mobilising molecules used both in experimental models
and clinical protocols40. The efficiency of G-CSF to mobilise
bone marrow precursors and long-term repopulating cells
initially was shown in early preclinical studies41. Administration
of G-CSF stimulates hyperplasia within the bone marrow
as well as a reduction in stromal cell-derived factor-1 (SDF-
1; also called CXCL12) mRNA expression, and an increase
in matrix metalloproteinase-9-dependent degradation of
existing SDF-142-44. The latter molecular events would serve
to enhance the mobilisation process via a lessening of
binding affinities of resident HSCs to the hematopoietically-
inducive marrow stroma.

Overall, use of exogenous G-CSF is associated with
various disadvantages, such as occasional severe toxic
side effects; drug instability at environmental temperatures,
requiring refrigeration throughout the supply chain; and
high cost.

4. AMD3100 (PLERIXAFOR�MOZOBIL) AS  AN
AGENT  FOR  MOBILISING  PROGENITORS
The ability of AMD3100 to increase the number of

circulating white blood cells was first discovered during
clinical trials as an anti-HIV drug candidate45. A bicyclam,
AMD3100 is composed of two cyclam units linked by an
aromatic linker. Commercially known as Plerixafor or Mozobil,
AMD3100 is a powerful CXCR4 (a CXC chemokine receptor)
antagonist that disrupts interactions between CXCR4 and
SDF-1. AMD3100 chemokine antagonist interactions promote
the migration of CD34+ HSC from bone marrow into peripheral
blood, where these can be collected for use in autologous
hematopoietic stem cell transplant (HSCT) (Fig. 1). In
combination with G-CSF, AMD3100 has been approved to
mobilise HSC for autologous HSCT in patients with non-
Hodgkin�s lymphoma or multiple myeloma36. Plerixafor is
a reversible, pure antagonist of CXCR4 that competes
with SDF-146. It disrupts the interactions between CXCR4
on CD34+ HSC and SDF-1 on bone marrow stromal cells,
essentially blocking the chemotactic actions of SDF-147.

This displacement of previously anchored CD34+ HSC
causes their release from stromal cells, allowing their subsequent
migration from the bone marrow into the peripheral blood48,49.
The ability of plerixafor to facilitate this movement was
first observed in studies evaluating the agent�s potential
antiviral effects50. Plerixafor has not been found to interact
with other chemokine receptors49.

Although both G-CSF and plerixafor have the ability
to mobilise HSC, a study of the mobilisation products of
plerixafor has suggested that this agent acts on a more
primitive subsets of CD34+ HSC than does G-CSF. The
need to better understand the hematopoietic repopulating
ability of plerixafor has led to additional studies to characterise
the quality of the cells being mobilised. The difference
in the mechanisms by which G-CSF and plerixafor mobilise
HSC also suggests that different subsets of HSC may be
mobilised by each agent and a potential for mobilising a
better quality of HSC exists when the two agents are used
in combination compared with either agent alone51. The
combination of G-CSF and plerixafor has been found to
facilitate HSC mobilisation in patients with multiple myeloma,
non-Hodgkin�s lymphoma, and Hodgkin�s lymphoma51.

5. TOCOPHEROL  SUCCINATE
Vitamin E is a generic term used for eight naturally

occurring tocopherols and tocotrienols (a, b, g, d) as well
as their derivatives52. These analogs are known as tocols;
a-tocopherol has been the focus of research because it
is the predominant form in human beings and animal tissues.
In addition, it is by far the most bioactive form based on
the rat fetal resorption test, which is the classical assay
for vitamins. Recently, the authors investigated the
radioprotective efficacy of a-tocopherol succinate (TS)
and their results indicate that TS is effective in protecting
mice when given 24 h before irradiation53 (dose reduction
factor 1.28). TS also modulates the expression of various
antioxidant genes and helps in hematopoietic recovery54.
The authors demonstrated that TS stimulates G-CSF production
and showed that TS-mediated protection can be neutralised
by administration of G-CSF antibody53,55,56.

The authors hypothesised that TS mobilises progenitor
cells into the peripheral circulation. Therefore, they evaluated
the efficacy of whole blood obtained from TS-treated mice
for protection against g-irradiation to compare with blood
obtained from G-CSF-treated mice. All mice, that were irradiated
but received no transfusion, died. Survival was significantly
higher in the groups where mice received blood either
from TS- or G-CSF-treated donors57.

The authors hypothesised that the early progenitors
mobilised by TS could be used to treat injuries due to
ionising radiation. Therefore, they evaluated the efficacy
of peripheral blood mononuclear cells (PBMC) obtained
from TS-injected mice for protection against g-radiation
exposure. A significant survival benefit was afforded to
groups that received from TS donors either 0.5 million or
2 million cells at 2 h or 24 h post-irradiation compared to
untreated irradiated mice57. When both TS and AMD3100
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were administered, they observed very high HSC mobilisation
in peripheral blood. Their results demonstrate enhancement
of lin-Sca-1 (Ly-6A/E), c-Kit (CD117) as well as double
positive cells (Sca-1, c-Kit) in response to TS/AMD3100
administration56. HSC mobilisation by TS was comparable
to that achieved by G-CSF.

Compared to G-CSF and other agents used for mobilising
progenitors (AMD3100�Mozobil/plerixafor), TS is a stable,
inexpensive, and well-tolerated product that induces
endogenous G-CSF. The authors believe that TS is highly
efficient and will outperform exogenously administered G-
CSF in the clinic, in terms of mobilising high quality, regenerative
marrow progenitors into the blood for subsequent collection,
transfusion, and effective therapy of various disease states
associated with acute immunosuppression. The authors
conclude that TS as an effective HSC mobiliser that might
well offer a number of very practical, very significant
advantages (i.e., less expense, more stable, simpler to
administer, etc.) over the conventionally used recombinant
growth factor, recombinant human G-cSF: however, advanced
preclinical studies using large animal studies, with subsequent
clinical trials using volunteers will be needed prior to
making any claims of TS�s potential clinical utility.

6. CONCLUSIONS
Victims of a terrorist attack presenting with the

hematopoietic syndrome resulting from exposure to excessive
levels of ionising radiation will succumb to sepsis if not
adequately treated. Survival probability is increased
substantially if the victim�s immune system is allowed to
recover before sepsis sets in.

Preclinical development of a new bridging therapy
that will allow the victim�s immune system to recover from
damage caused by ionising radiation has been reported.
TS has been found, using a well-defined, preclinical murine
model of acute ionising radiation injury, to be a well-
tolerated and promising radiation countermeasure. TS is
inexpensive and induces high levels of G-CSF in circulation
within 24 h of subcutaneous administration, leading to
mobilisation of marrow progenitors into peripheral blood.
Transfusion of frozen and stored whole blood, or selectively
enriched progenitorial cell fractions from TS-treated donor
mice, into lethally ionising radiation-exposed recipients
can provide enhanced hematopoietic repair and recovery
and, in turn, extend survival. Further preclinical work and
refinements, as well as subsequent clinical translation of
the TS-blood progenitor mobilisation and autologous blood
infusion protocol, might provide a simpler, improved protocol
in clinical management of individuals suffering from high
ionising radiation dose-mediated ARS.

Recently, other investigators have initiated such studies.
One group has developed a cellular therapy that contains

Figure 1. Diagrammatic representation of progenitor mobilisation by different mobilising agents such as G-CSF and AMD3100.
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human progenitor cells. This group (Cellerant Therapeutics,
San Carlos, CA) has been awarded a $153 million grant
from the Biomedical Advanced Research and Development
Authority (BARDA) to develop CLT-008 as a cellular therapy
for treating the hematopoietic syndrome observed after
acute exposure to ionising radiation58. Upon transfusion
of CLT-008 into the irradiated victim, the progenitor cells
will have the ability to mature into granulocytes, platelets,
and erythrocytes.
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