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1. INTRODUCTION
The United States and India have become strategic

partners for developing peaceful uses of nuclear energy1,
but both countries are vulnerable to radiological terrorism
or nuclear accidents.  Soon after the 11 September 2001
attacks on the World Trade Centre and the Pentagon, scientists
in the United States began to question the country�s ability
to cope with a radiological terrorism incidents2.  The outline
of what was needed was fairly obvious: (i) the ability to
prevent such an attack;(ii)  methods to cope with the medical
consequences; (iii) the ability to clean up afterwards; and
(iv) the tools to figure out who did it3 (Fig. 1).
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institutes where radioprotectors and countermeasures against
ionizing radiation from indigenous herbs are being developed5.
This review focuses of the current status of the medical
components needed to cope with a mass-casualty radiological
or nuclear incident:  rapid biodosimetry, therapies for acute
radiation syndrome (ARS), and therapies for late injuries.

2. WHY  WORRY  ABOUT  ORGAN  SYSTEMS
OTHER  THAN  BONE  MARROW?
In the Chernobyl accident, the acute 50 per cent lethal

dose (LD
50

) was about 6 Gy6. If a similar-size incident were
to occur now, advances in treatment of ARS are such that
there would probably be survivors with exposures2 as high
as 8-12 Gy (Fig. 2). Upper-body doses as high as this would
cause radiation pneumonitis7 (Fig. 2), and might also cause
cognitive impairment8,9 and cardiac injury10,11. Lower-body
doses as high as this would result in severe prodromal
emesis and diarrohea12,13 (Fig. 2) and would exceed renal
tolerance14,15 (Fig. 2).  Thus, an effective medical counter­measures
program needs to deal with both acute hematological injury,
and with delayed injury to organ systems as diverse as
kidney, lung, heart and brain2.

3. PROTECTION  VERSUS  MITIGATION  VERSUS
TREATMENT
The term �radioprotector� has long been used in

radiobiology to refer to prophylactic agents that must
be given before radiation exposure; mitigators are agents
that are given after radiation exposure, but before the
appearance of overt evidence of injury; and treatment
refers to thoseagents that are given after overt symptoms
develop16 (Fig. 3).
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Figure 1. The components of a complete radiological terrorism
countermeasures programme. (Adapted with
permission from Moulder3).

In the United States, centres for countermeasures against
radiation were established for rapid development of biodosimetry,
decorporation agents, and medical countermeasures4.  In
India, nuclear research and development was pioneered
by the first Prime Minister Pundit Jawaharlal Nehru with
the help of Dr Homi Bhabha and other leading scientists.
Their initiatives resulted in the building of prominent research
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5. PROGRESS ON BIODOSIMETRY
The need for medical intervention requires knowing

radiation doses, preferably organ-specific doses33-35. While
there are sophisticated and widely available instruments
for assessing contamination, the available tools for retroactive
assessment of radiation doses are either primitive or are
not widely available33,36,37.  If a mass-casualty incident
occurs now, the only method for rapid (<12 h) radiation
dose assessment would be �time to emesis�37. This is not
actually very useful, since not all irradiated people (even
those with large abdominal doses) vomit, and in many
mass casualty scenarios, there will be other reasons that
will cause people to vomit36,38.

If more time was available, dose estimates could be
made based on lymphocyte depletion kinetics, but that
takes at least a day36,37. In theory, doses could also be
based on chromosome aberrations in blood lymphocytes,
but this assay takes days and requires samples to be sent
to central laboratories whose capacity is limited33,36,37.

Recent research has shown that faster and more deployable
systems are theoretically possible.  Dr Harold Swartz�s
group at Dartmouth Medical School (Hanover, New Hampshire,
USA) has developed portable electron paramagnetic resonance
(EPR) dosimeters that can measure low-LET radiation doses
from teeth and finger nails39,40. The EPR signal is durable
and it appears that the techniques can detect doses as
low as 2 Gy36,39,40. Dr David Brenner�s group at Columbia
University Medical Centre (New York, USA) has taken a
very different approach, and is developing an automated
device for measuring radiation-induced micronuclei and
d-H2AX fluorescence in blood lymphocytes41. However,
machines such as these will not be deployed anytime
soon, as currently there is no market to support the cost
of manufacturing the units and/or the cost of getting
these approved by the required authorities (e.g., in the
USA, by the Food and Drug Administration).

6. PROGRESS  ON  MITIGATION  OF  ACUTE
RADIATION  SYNDROME  (ARS)
A number of groups have devoted considerable effort

to improving treatment of ARS29,42-44.  Interestingly, high-
quality supportive care may be far more important than
any of the new biologicals or pharmaceuticals.  For example,
Dr George Georges�s group at the Fred Hutchinson Cancer
Research Centre (Seattle, Washington, USA) has shown
that the canine LD

50
 can be increased from <4 Gy to about

8 Gy by providing human-standard supportive care (e.g.,
isolation, hydration, antibiotics, transfusions). Adding state-
of-the-art cytokine therapy to this supportive care did not
further45 increase the LD

50
.

After a radiation terrorism incident with doses > 4 Gy,
providing supportive care to a large number of victims
will be the immediate challenge.  This challenge becomes
more severe by the fact that it is not clear which aspects
of supportive care are most important.  Dissecting supportive
care to find out what really matters will be difficult, as

All three approaches have been assessed in clinical
or preclinical studies. Prophylactic agents include free
radical scavengers17,18 and herbal radioprotectors19,20.
Mitigators include suppressors of the renin-angiotensin
system21-23 and suppressors of chronic oxidative stress23-25.
Treatment agents include some of the drugs that are
effective as mitigators22,24, but also include agents such
as pentoxifylline to treat radiation fibrosis26,27 and growth
factors to facilitate recovery from hematological injury28,29.
In India, a wide range of herbal and nutriceutical
countermeasures are being developed20,30 as clinical models31

for testing novel agents.

4. COMPONENTS  OF  A  MEDICAL
COUNTERMEASURES  PROGRAMME
In dealing with the medical consequences of radiological

terrorism or nuclear accidents, there are three major biomedical
issues: (i) determining exposure, (ii)dealing with acute
radiation injuries, and (iii) dealing with chronic radiation
injuries32,33.  Biodosimetry is of little practical use unless
there are effective therapies.  Therapies for acute injuries
will have very few long-term benefits unless there are
therapies for the late effects that will occur in people who
receive high doses and for whom hematological toxicity
cannot be presented (Fig. 2).  Conversely, therapy for
chronic radiation injuries will be of little use without
development of better biodosimetry tools, and better methods
for decreasing acute hematological toxicity.

Figure 2.  The relationship between total body irradiation (TBI)
dose and toxicity.  Dose-response data are shown for
hematopoietic lethality after the Chernobyl accident
(¡)6 and for how that lethality dose-response curve
might look if a similar incident happened now (gray
area).  Data are also shown for acute radiation-induced
nausea and vomiting (¨)13, chronic renal failure (l)14,
and pneumonitis (n)7. (Adapted with permission from
Moulder3).

Figure 3. Recommended terminology for therapeutic approaches
to radiation-induced normal tissue injuries. (Adapted
with permission from Stone16, et al.)
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the studies needed are considered problematic by many
of the authorities that regulate animal studies (e.g., in the
USA, by the Institutional Animal Care and Use Committees).

7. PROGRESS  ON  MITIGATION  OF  LATE
NORMAL  TISSUE  INJURY
In the laboratory, a wide range of late normal tissue

injuries can be mitigated using therapies that are not started
until days to weeks after irradiation25,46-54.  Such mitigation
was first demonstrated in models of renal injury using
angiotensin-converting enzyme inhibitors (ACEi�s) that
are commonly used in human beings to treat hypertension
and heart disease46.  Subsequently, the ACEi�s were also
shown to mitigate experimental radiation-induced lung47,
brain48, and cardiac49 injuries.  One of the ACEi�s, captopril,
has now made the leap from bench-to-bedside and has
been shown to be effective for mitigation of radiation-
induced renal injury in human beings50 (Fig. 4).  A related
type of antihypertensive drug, the angiotensin II type-1
receptor blockers, are also effective for mitigation of some
types of radiation injuries46, but other types of anti-hypertensive
agents are not51.

USA to be a proof that it is suitable for use as a radiological
terrorism countermeasure. Since people cannot be irradiated
to test whether candidate mitigators are effective, their
efficacy will need to be proven using animal studies31,55.
To our knowledge, this route to drug labeling has never
been tried for a radiation mitigator and it is not clear that
the required studies are even feasible; but at a minimum,
satisfying the regulations will require time- and money-
intensive efforts.  How India or other countries will handle
this issue is not yet clear.

8. WHAT IF AN INCIDENT HAPPENED NOW?
The good news from the laboratory is that they now

have �proof of principle� that an effective medical
countermeasures programme is possible:  methods for rapid
large-volume biodosimetry could be developed and deployed;
the acute effects of radiation can be alleviated; the chronic
effects of radiation on normal tissues can be mitigated.

The bad news is that moving from laboratory studies
to a deployed programme will not be easy.  The work that
still needs to be done is expensive and time-consuming,
and the move from the laboratory to the field may face
severe regulatory barriers.

The best current role for the radiation safety and
defence community is to use their resources and expertise
to make sure that radiological terrorism and nuclear accidents
do not occur.  But all potential first responders should
also have a emergency response database such as REMM
Radiation Emergency Medical Management http://
www.remm.nlm.gov) loaded on their computers.
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