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NOMENCLATURE
 CD	 	 Drag	coefficient
 Cp	 	 Specific	heat	capacity	at	constant	pressure
 ht	 	 Total	specific	enthalpy
 Main		 Inflow	Mach	number
 p	 	 Static	pressure
 r	 	 Radial	distance
 R	 	 Characteristic	gas	constant
  S		 	 Surface	area
 T	 	 Absolute	temperature
 V  Velocity	vector
Greek Symbols
 α	  Nose	angle
 β	  Tail	angle
 ρ	    Density
Subscript
 ∞				 	 Free	stream	conditions

1. INTRODUCTION
Studying	 the	 aerodynamic	 characteristics	 of	 projectile	

is	most	 important	 task	 in	designing	 the	projectile.	The	study	
reveals	 the	 individual	 role	 played	 by	 important	 parameters	
which	must	be	considered	while	designing	a	projectile.	One	of	
the	most	important	parameters	is	the	prediction	of	drag	which	
depends	 on	 the	 drag	 coefficient.	 The	 drag	 of	 the	 projectile	
decides	 the	 range	and/or	 terminal	velocity	of	 the	projectiles.	
Various	options,	in	practice,	for	drag	reduction	are	boat	tailing,	
base	cavity,	and	base	bleed1,2.	In	this	study	instead	of	boat	tail,	
a	rounded	tail	has	been	considered.	The	drag	is	defined	as	the	
stream-wise	component	of	 the	forces	acting	on	the	boundary	
surface3.	The	total	drag	of	a	projectile	can	be	broadly	divided	
into	two	categories:	one	arising	due	to	viscous	(skin	friction)	
forces	 and	 the	 other	 resulting	 due	 to	 pressure	 forces4.	 The	

pressure	drag	is	created	by	the	normal	forces	to	the	boundary	
surface,	 while	 the	 viscous	 drag	 is	 created	 by	 the	 tangential	
forces5.	Out	of	these	two	components,	the	drag	resulting	due	to	
pressure	force	is	dominant.	Therefore,	studying	the	distribution	
of	pressure	over	the	projectile’s	surface	is	important.

The	projectile	during	 its	flight	moves	 through	subsonic,	
transonic,	 and	 supersonic	 flow	 regimes.	 The	 interaction	 of	
the	 projectile	 with	 the	 flow-field	 is	 complicated	 because	 of	
the	presence	of	a	shock	wave.	When	a	projectile	is	 launched	
from	a	barrel,	depending	upon	the	Mach	number	of	the	exiting	
jet	ahead	of	the	projectile,	a	secondary	blast	wave	may	form	
behind	 the	 primary	 blast	 wave6.	 The	 flow-field	 becomes	
more	complicated	because	of	the	interaction	of	the	projectile,	
primary	blast	wave,	and	 the	secondary	blast	wave	with	each	
other.	These	interactions	affect	the	aerodynamic	characteristics	
drastically.	The	unsteady	flow-field	of	a	projectile	launch	has	
been	 studied	 by	 many	 investigators7–11.	 Chand	 and	 Panda12 
studied	 the	 projectile	 trajectory	 using	 simplified	 point	 mass	
approach	which	considered	only	the	drag	force	and	the	gravity	
force.	They	have	shown	that	even	with	the	simplified	approach,	
the	 predicted	 range,	 time	 of	 flight	 range,	 and	 the	 deviation	
were	within	7	per	cent	of	the	experimental	results	which	they	
acquired	 using	 Doppler	 radar.	 Dutta13, et al.	 proposed	 two	
methods	to	extract	the	drag	coefficient	from	the	radar-tracked	
flight	data	of	a	cargo	shell.	The	effect	of	perturbation	on	 the	
trajectory	 and	 stability	 of	 motion	 of	 an	 FSAPDS	 projectile	
was	studied	by	Acharya	and	Naik14.	Watanabe8, et al.	studied	
the	 one-dimensional	 projectile	 overtaking	 problem.	 They	
concluded	that	the	possible	overtaking	can	be	either	subsonic	
or	 supersonic.	Ahmadikia	and	Shirani15	 studied	 the	 transonic	
and	supersonic	over-taking	of	a	projectile	preceding	a	shock	
wave.	 They	 found	 that	 as	 the	 projectile	 passes	 through	 the	
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moving	 shock	 wave,	 it	 changes	 the	 flow-field	 features	 and	
pressure	 distribution	 dramatically.	 The	 drag	 force	 decreases	
and	 even	 becomes	 negative	 while	 the	 projectile	 takesover	
the	 shock	wave.	 It	 should	 be	 noted	 that	 unsteady	 flow-field	
predictions	 depend	 on	 the	 initial	 conditions	 of	 the	 projectile	
and	the	flow-field.	Usually,	the	steady-state	solution	for	a	given	
Mach	number	(at	the	free-stream	conditions)	is	considered	as	
the	initial	condition.	Therefore,	for	studying	the	un-steady	flow-
field,	it	is	extremely	important	to	predict	the	initial	condition	
more	precisely,	which	ultimately	affects	the	final	predictions.

The	present	study	aims	to	study	the	steady-state	flow-field	
for	a	projectile	moving	in	subsonic,	transonic,	and	supersonic	
flow	 regimes.	The	emphasis	 is	 also	placed	on	predicting	 the	
drag	 coefficient	 for	 the	 three	 flow	 regimes	 for	 a	 rounded	
tail	 projectile.	 For	 the	 same	 purpose,	 a	 two-dimensional	
axisymmetric	 model	 around	 the	 projectile	 has	 been	 solved	
for	 the	 Euler’s	 equations	 along	 with	 the	 inviscid	 energy	
equation	using	finite	volume	method.	The	results	obtained	will	
provide	a	deeper	insight	into	the	fundamentals	of	aerodynamic	
characteristics	of	the	projectiles.

2. MATHEMATICAL FORMULATION
The	 geometry	 of	 the	 projectile	 is	 shown	 in	 Fig.	 1.	The	

parameters	kept	constant	are:	
•	 the	nose	angle	α =	10°,	
•	 the	tail	angle	β =	40°,	
•	 radius	of	the	projectile	R =	60	mm,	and	
•	 the	length	of	the	projectile	L =	1	m.	

These	parameters	are	chosen	to	model	the	actual	projectile	
with	a	little	modification	at	the	base	which	is	assumed	to	have	a	
rounded	tail	instead	of	the	conventional	boat	tail;	the	effect	of	
which	is	studied	in	more	detail	in	this	paper.

given	by
2

    
2t p

V
h C T= + 																														 	 								(3)

where	 ht represents	 total	 enthalpy	 per	 unit	 mass,	 Cp is	 the	
specific	 heat	 capacity	 at	 constant	 pressure,	 and	 T is	 the	
absolute	temperature.	For	the	entire	study,	Eqn.	(3)	is	solved	
for	 obtaining	 the	 distribution	 of	 temperature	 inside	 the	
computational	domain.	Once	the	distribution	of	pressure	and	
temperature	is	obtained	after	solving	Eqns	(1)	through	(3),	the	
density	is	updated	using	the	equation	of	state:

    p RT=ρ                                               (4)
where	R is	the	characteristics	gas	constant.

2.2 Solution Approach
The	two-dimensional	axisymmetrical	Euler	equations	are	

discretised	on	a	structured	non-orthogonal	grid	system	using	
finite	volume	approach.	A	typical	computational	domain	with	
variation	in	grid	densities	is	shown	in	Fig.	2.	Figure	2(b)	shows	
the	grid	densities	near	 the	projectile.	 It	 should	be	noted	 that	
grids	are	laid	in	such	a	manner	that	grid	density	is	higher	near	
the	large	variation	zone	(i.e.,	near	the	projectile)	and	it	is	lower	
at	the	extremities	of	the	computational	domain.	The	upstream	
and	 the	 downstream	 distances	 of	 the	 computational	 domain	
are	taken	equal	to	3	m	and	15	m,	respectively	while	the	radial	
distance	is	taken	equal	to	8	m.	The	above-mentioned	distances	
are	 found	 sufficient	 to	 impose	 the	 inflow	 and	 the	 outflow	
boundary	conditions	at	the	extremities	of	the	domain.	It	should	
be	noted	that	the	continuity	equation	is	used	for	solving	pressure	
correction	equation	which	takes	into	account	the	compressible	
nature	of	the	flow.	The	discretisations	of	convective	and	diffusive	
terms	 (the	 term	 arising	 due	 to	 pressure	 correction	 equation)	

Figure  2. A typical computational domain and  grid density 
near the projectile (a) A typical grid, and (b) Grid 
density near the projectile.

Figure 1.  Geometry of the projectile.

2.1   Governing Equations
It	should	be	noted	that	for	the	current	study,	the	coordinates	

for	 the	 free	Euler’s	equations	are	solved.	The	continuity	and	
the	momentum	equations	are	written	as:

( )div     0ρ =V 																																		 	 							(1)
div( )   div( )i iu pρ =−V i   																							 	 							(2)

where ρ is	the	density,	V is	the	velocity	vector,	p is	the	static	
pressure.	The	momentum	equation	is	written	in	index	notation;	
ii is	the	unit	vector	along	the	i 

th	direction.
Along	 with	 the	 above	 mentioned	 continuity	 and	

momentum	equations,	the	energy	equation	is	also	solved	for	the	
temperature	distribution.	In	the	absence	of	viscous	effect,	the	
energy	equation	simply	reduces	to	the	total	enthalpy	equation	

(a)

(b)
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are	done	using	deferred	correction	approach	as	suggested	by	
Demirdzic16, et al.	The	deferred	correction	approach	not	only	
enhances	the	accuracy	of	the	numerical	methods,	as	compared	
to	the	first-order	schemes,	but	it	also	improves	the	stability	of	
the	numerical	technique.

2.3 Discretisation Method
For	 numerical	 solution,	 the	 computational	 domain	 is	

divided	into	a	number	of	smaller	sub-domains,	called	as	control	
volumes	 (CVs).	A	 typical	 non-orthogonal	 control	 volume	 is	
shown	in	Fig.	3.	The	normal	vector	to	each	control	volume	face	
is	represented	by	bold-italic	letter	n.	All	the	primitive	variables	
and	 all	 the	 fluid	 properties	 are	 stored	 at	 the	 control	 volume	
centres,	represented	by	P,	E,	W,	N,	and	S.	

A Ap p nb nb Qϕϕ + ϕ =∑                                  (9)

where,	Anb accounts	for	the	contribution	from	the	neighbouring	
control	volumes.

The	Cartesian	velocity	components	at	each	nodal	location	
are	obtained	by	solving	the	discretised	Eqn	(8)	for	 *

xu 	and	 *
yu

.	These	velocities,	obtained	using	the	old	pressure	and	density,	
do	not	satify	the	continuity	Eqn	(1);	that	is	why	they	carry	an	
asterisk.	The	mass	flux	obtained	using	above	velocities	needs	
to	be	corrected	to	force	the	mass	conservation;	this	is	done	by 
correcting	 the	 velocity	 and	 the	 density,	 which	 is	 described	
below.

Unlike	the	incompressible	flow,	the	mass	flux	depends	on	
both	the	velocity	and	the	density	in	compressible	flow.	As	noted	
earlier	(Eqn	(6),	the	mass	flux	at	the	CV	faces	is	expressed	in	
terms	of	the	normal	velocity	component	(vn)	and	the	density	(ρ)	
at	that	location.	To	correct	the	mass	flux,	both	these	quantities	
are	corrected	and	the	corrected	mass	flux	is	given	as

( ) ( )* ' * 'corr
e n n ee e

m v v S= ρ +ρ + 																				 						(10)

where ρ′	 and	 vn′ represent	 the	 density	 and	 normal	 velocity	
corrections,	 respectively.	 The	 mass	 flux	 correction	 is	 thus	
given	by:

( ) ( ) ( )' * ' ' ' '
e n n ne e

m v S v S v S= ρ + ρ + ρ 																 						(11)

The	last	term	is	usually	neglected	because	it	is	of	second	
order	 in	 corrections.	 The	 first	 term	 on	 the	 right	 hand	 side	
accounts	for	the	velocity	correction,	the	expression	for	which,	
in	terms	of	pressure	corrections,	can	be	easily	found	out	using	
the	 SIMPlE	 approach	 suggested	 by	 Patankar17.	 The	 second	
term	arises	due	to	the	compressibility;	it	contains	the	density	
correction,	which	needs	to	be	expressed	in	 terms	of	pressure	
correction.	This	is	achieved	by16:

' 'p
p

 ∂ρ
ρ =  ∂  																																	 	 						(12)

 The	term	 p
 ∂ρ
 ∂ 

	can	be	determined	from	the	equation	of	

state	or	any	other	method	which	relates	the	pressure	with	the	

density.	It	should	be	noted	here	that	the	choice	of	
p

 ∂ρ
 ∂ 

	does	

not	 affect	 the	 converged	 solution	because	 all	 the	 corrections	
go	 to	 zero	 at	 the	 convergence.	 However,	 it	 does	 affect	 the	
convergence	rate.	For	the	present	study,	this	term	is	calculated	
using	the	equation	of	state.

2.4 Grid-independent Test
The	 accuracy	 of	 the	 numerical	 method	 depends	 on	

the	 order	 of	 the	 discretisation	 scheme	 used	 for	 the	 different	
components	 appearing	 in	 the	 governing	 equations	 and	 the	
type	and	number	of	control	volumes	used	 for	 the	simulation	
as	 well.	 Hence,	 it	 becomes	 extremely	 important	 to	 do	 grid-
independence	 test	 before	 going	 for	 the	 productive	 runs.	 For	
example,	Fig.	4	shows	the	variation	of	the	pressure	along	the	
surface	of	the	projectile	for	the	two	sets	of	grid	density.	It	can	
be	noticed	that	with	the	increase	in	number	of	control	volumes,	
the	change	 in	predictions	 is	almost	negligible.	Hence,	a	grid	
density	of	420	×	240	is	chosen	for	the	entire	simulations.

Figure  3. A typical non-orthogonal control volume with its 
neighboring elements. 

It	is	to	be	noted	that	the	current	study	uses	coordinate	free	
governing	 equations	 which	 do	 not	 depend	 on	 the	 curvature	
terms;	 it	 only	 requires	 the	 projections	 of	 the	CV	 faces	 onto	
Cartesian	coordinates	during	the	course	of	discretisation.	These	
are	readily	available	with	the	current	practice	which	joins	the	
CV	faces	by	straight	lines.	For	example,	mass	flux	at	the	east	
face	is	calculated	as	follows:

( )
e

e ee

A

m ndS n S= ρν ⋅ ≈ ρν ⋅∫ 																							 								(5)

where	unit	normal	vector	at	the	east	face	is	defined	as
( ) ( )n i - j i+ je e ne se e ne se e x yS y y r x x r S S= − − = 		 				(6)

Now,	mass	flux	is	given	by:

     (  )   (  )   e e x x y y e e n em S u S u v=ρ + = ρ               (7)
where	 vn is	 the	 normal	 velocity	 component	 at	 the	 east	 face.	
Therefore,	 convective	 flux	 of	 any	 variable	 φ can	 now	 be	
expressed	as

. .  
e

C
e e e

A

F v ndS m= ρϕ ϕ∫                                (8)

Similarly,	 the	convective	flux	at	 the	other	CV	faces	can	
be	found	out.

After	 summing	 up	 contribution	 from	 all	 the	 convective	
fluxes	and	the	source	terms,	the	discretised	equation	for	φ	has	
the	following	form:
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2.5 Code Validation
The	 present	 numerical	 code	 is	 validated	 against	 the	

experimental	 results	 obtained	 by	Mason18, et al. for	 a	 plane,	
symmetrical,	and	converging/diverging	nozzle	of	type	A1.	The	
geometrical	details	of	the	nozzle	are	given	in	literature18.	The	
computational	mesh	consists	of	450	×	50	control	volumes	for	this	
case.	It	should	be	noted	that	higher	grid	density,	e.g.	600	×	60,	
is	also	employed	but	the	difference	in	results	was	insignificant.	
For	 the	 numerical	 computations,	 the	 total	 pressure	 and	 the	
total	enthalpy	are	specified	at	the	inlet	while	all	the	quantities	
are	extrapolated	from	inside	the	computational	domain	at	the	
outlet.	Euler	equations	are	solved	by	setting	the		viscosity	value	
equal	to	zero.	Figure	5	shows	the	variation	of	pressure	and	the	
isentropic	Mach	number	on	the	channel	wall.	The	figure	also	
represents	the	experimental	results	obtained	by	Mason18,	et al. 
Their	results	are	shown	with	a	square	symbol.	It	can	be	noticed	
that	 the	 current	 numerical	 prediction	 is	matching	 quite	well	
with	the	experimental	result.	Further	note	that,	Fig.	6	indicates	
the	capability	of	the	employed	numerical	technique	to	resolve	
the	shock	wave	clearly.	Also,	it	can	capture	the	reflection	of	the	
shock	wave	from	the	wall.

3. RESULTS AND DISCUSSION
The	 two-dimensional	 axisymmetrical	 Euler’s	 equations	

along	with	 the	 energy	equation	 for	 inviscid	fluid	 are	 solved.	
The	 input	 parameters,	which	 are	 kept	 constant	 for	whole	 of	
the	 simulations,	 are	 listed	 in	 Table	 1.	 The	 drag	 coefficient	
and	 the	 flow	 pattern	 are	 obtained	 for	 all	 the	 compressible	
flow	 regimes:	 subsonic,	 transonic,	 and	 supersonic.	 For	 this	
purpose,	 the	 uniform	 inlet	 flow	velocity	 is	 chosen	 in	 such	 a	
manner	as	 to	have	an	 inflow	Mach	numbers	of	0.5,	0.9,	and	
1.5	which	correspond	to	the	three	flow	regimes,	respectively.	
In	 the	 following	 pressure	 variation	 plots,	 the	 surrounding	
atmospheric	pressure	is	shown	by	a	dashed	line	which	is	equal	
to	105	N/m2.

3.1 Subsonic Flow Regime: Ma=0.5
Figure	 7	 represents	 the	 isomach	 lines	 and	 the	 Mach	

number	 and	 pressure	 distribution	 along	 the	 axis	 and	 the	

Figure  4.  Grid-independency test.

Figure  5. Pressure and  isentropic Mach number variations 
along  the channel wall : (a) Pressure variation, and 
(b) Isentropic Mach number variations.

ρ∞	 1.2	kg/m3 γ   1.4;	ratio	of	specific	heats

Cp     1005	J/kg	OC    R    287	J/kg	OC

p∞	 105	N/m2    c∞   340.17	m/s

Table 1. Values of the input parameters

Figure 6.  Mach  number contours for the nozzle.

(a)

(b)

P	
(N
/m

2 )

x	 (m)
x/l

x/l

P/
P t

Is
en
tro

pi
c	
M
ac
h	
N
um

be
r	A

t	W
al
l

Experimental	result
Current	numerical	result

Experimental	result
Current	numerical	result



KUMAR,	et al.:	FlOW	AROUND	A	CONICAl	NOSE	WITH	ROUNDED	TAIl	PROJECTIlE	FOR	SUBSONIC,	TRANSONIC,	AND	SUPERSONIC

513

projectile	surface	for	a	subsonic	case.	At	the	inlet,	the	upstream	
far	field	variables	are	specified	(except	for	pressure).	The	inlet	
Mach	number	Main is	set	equal	to	0.5.	It	is	noticed	that	even	
for	a	subsonic	case	the	flow-field	is	not	symmetric;	the	flow	is	
decelerated	near	the	trailing	edge	of	the	projectile	because	of	
the	adverse	pressure	gradient	there	(as	reflected	in	Fig.	7(c)).	
There	are	 two	 locations	on	 the	projectile	where	 the	pressure	
gradient	changes	its	sign.	The	two	locations	are	identified	as	the	
merging	point	of	the	nose	section	to	the	main	body	(designated	
as	section	A	in	this	study)	and	the	merging	point	of	tail	section	
with	the	main	body	of	the	projectile	(designated	as	section	B	in	
this	study).	It	is	noticed	that	there	is	a	sudden	drop	in	velocity	
at	the	nose	tip	(i.e.,	at	z =	−0.5),	because	of	the	stagnation	of	the	
flow-field	at	the	nose	tip.	But,	the	flow	accelerates	afterwards	
till	the	section	A,	where	it	experiences	a	change	in	curvature	of	
the	projectile.	This	change	slows	down	the	flow	till	the	start	of	
section	B	where	the	flow	again	accelerates	and	then	decelerates	
till	 the	 tail	end.	This	 is	 the	point	 in	 the	entire	domain	which	
experiences	 the	maximum	 resistance;	 as	 a	 consequence,	 the	
Mach	number	 is	 smallest	at	 this	point.	The	Mach	number	at	
the	 outlet	 is	 equal	 to	 the	 inflow	Mach	number,	which	 is	 the 
characteristics	of	a	subsonic	flow16,19,20.

3.2 Transonic Flow Regime: Ma = 0.9
When	the	inflow	Mach	number	is	increased	to	0.9,	the	Mach	

number	contours	further	deviate	from	being	symmetric	to	the	
projectile.	It	is	reflected	in	Fig.	8,	which	represents	the	isomach	
lines	and	the	Mach	number	and	pressure	distribution	along	the	
axis	and	the	projectile	surface	for	a	transonic	flow	regime.	At	
the	inlet,	the	upstream	far	field	variables	are	specified	(except	
for	 pressure).	 It	 can	 be	 noticed	 that	 the	 pressure	 variation	
remains	almost	similar	with	a	change	in	the	peak	values.	Also,	
it	is	observed	that	the	first	peak	occurs	exactly	at	the	section	A	
while	the	second	peak	shifts	little	downstream	from	section	B.	
More	or	less	pressure	remains	constant	between	sections	A	and	
B	for	both	the	cases.	The	maximum	Mach	number	increased	
from	0.61	to	1.26,	which	occurs	at	the	same	location,	z	=	-0.155	
m,	for	both	the	cases.

3.3 Supersonic Flow Regime: Ma = 1.5
The	effect	of	high	speed	on	the	drag	is	considered	next.	It	

is	assumed	that	at	the	inflow	boundary,	i.e.,	the	left	boundary	
of	the	computational	domain,	the	flow	properties	are	uniform.	
The	inflow	velocity	is	chosen	in	such	a	way	to	make	the	inflow	
Mach	number,	Main =	1.5.	This	condition	corresponds	 to	 the	

Figure 7. Mach number contours: (a) Mach number profiles, 
(b) pressure variation, (c) along the projectile, and 
the axis for subsonic inviscid flow.

Figure 8. Mach number contours: (a) Mach number profiles, 
(b) pressure variation, (c) along the projectile, and  
the axis for transonic inviscid flow.
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supersonic	flow	regime	at	the	inlet.	Also,	the	flow	is	supersonic	
at	the	outlet;	therefore,	all	the	variable	values	are	extrapolated	
at	the	outlet.	Figure	9	shows	the	isomach	lines	and	the	Mach	
number	 and	 pressure	 distribution	 along	 the	 axis	 and	 the	
projectile	surface.	This	case	shows	entirely	different	patterns	
as	 compared	 to	 the	 previous	 two	 cases.	 Once	 the	 pressure	
increases	at	the	nose	tip,	it	continues	to	have	almost	the	same	
value	till	 the	section	A;	as	there	is	hardly	any	loss	of	kinetic	
energy	between	the	nose	tip	and	section	A.	At	section	A,	there	
is	a	sudden	change	in	flow	properties,	indicating	the	presence	
of	shock	wave	at	that	location,	which	can	be	seen	in	Fig.	9(a).	
Another	 shock	 wave	 can	 also	 be	 noticed	 near	 the	 trailing	
edge	of	the	projectile.	It	is	interesting	to	observe	that	the	flow	
decelerates	between	sections	A	and	B,	as	opposed	to	previous	
two	 cases	 where	 the	 flow	 characteristics	 remained	 almost	
constant.	Also,	the	pressure	across	the	tail	section	remains	sub-
atmospheric	and	the	fluid	accelerates	for	long	as	compared	to	
the	previous	cases.	These	features	are	in	accordance	with	the	
features	usually	observed	for	high	Mach	number	flows.

3.4 Flow-field
Figure	 10	 shows	 the	 vector	 plot	 near	 the	 base	 of	 the	

projectile	 for	 the	 three	 cases.	 It	 can	 be	 noticed	 that	 the	
expansion	waves	are	absent	for	the	case	of	subsonic	flow	(Fig.	
10	 (a)).	When	 the	 inflow	Mach	 number	 is	 increased	 to	 0.9,	
the	 intensity	of	flow	 increased	around	 the	base	 significantly;	
while	 this	 increase	 is	 only	 10	 per	 cent	 for	 subsonic	 case,	 it	
is	around	33	per	cent	 for	 the	 transonic	case,	 i.e.,	Main =	0.9.	
Although,	the	intensity	of	flow	increased	but	there	is	no	sign	
of	any	flow	separation.	This	can	be	attributed	to	the	two	facts:	
(i)	the	curvature	of	base	is	smooth	as	opposed	to	the	curvature	
of	 base	 for	 boat	 tail	 projectiles,	 and	 (ii)	 the	 assumption	 of	
flow	tangency	at	the	projectile	surface.	However,	it	should	be	
mentioned	 that	 the	 viscosity	 does	 not	 have	 significant	 effect	
on	 the	projectile	aerodynamic	characteristics21.	Figure	10	 (c)	
shows	the	vector	plot	for	the	supersonic	case,	i.e.,	Main =1.5.	
The	flow-field	turns	more	towards	the	projectile	surface	owing	
to	the	presence	of	shock	wave	at	the	end	of	base.

3.5 Drag Coefficient
Drag	plays	an	important	role	in	the	design	of	projectiles.	

Therefore,	calculation	was	carried	out	to	find	out	the	coefficient	
of	 drag	 for	 the	 three	 flow	 regimes:	 subsonic,	 transonic,	 and	
supersonic.

Figure 9. Mach number contours : (a) Mach number profiles, 
(b) pressure variation, (c) along the projectile and 
the axis.

Figure 10. Vector plot near the base of the projectile : (a) Main= 
0.5, (b) Main= 0.9, (c) Main=1.5.
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The	coefficient	of	drag	is	calculated	as

21
2

D
D

FC
AU ∞∞

=
ρ

where FD is	the	drag	force,	ρ∞	and	U∞	are	the	free	stream	density	
and	velocity,	respectively	and	A	is	the	frontal	area.	The	value	
of	coefficient	of	drag	for	the	studied	cases	is	listed	in	Table	2.	It	
can	be	noted	from	Table	2	that	the	drag	coefficient	for	subsonic	
and	transonic	flow	regimes	decreases	drastically	as	compared	
to	the	previous	reported	values	for	155	mm	artillery	shell15,22.	
There	is	a	decrease	of	about	90	per	cent	for	subsonic	case	while	
it	is	nearly	75	per	cent	for	the	transonic	case.	This	decrease	is	
attributed	 to	 the	 smooth	 base	 profile	 of	 the	 projectile	 as	 the	
drag	coefficient	largely	depends	on	the	base	profile.	Also,	it	has	
been	shown	by	Suliman22, et al.	 that	base	drag	reduces	from	
0.25	to	0.08	when	the	boat	tail	angle	is	increased	from	0°	to	14°	
for	Mach	number	of	0.7.	They	observed	a	reduction	of	50	per	
cent	for	both	the	subsonic	and	the	transonic	cases	by	increasing	
the	boat	tail	angle	by	9.50.
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4. CONCLUSION
An	axisymmetric	mathematical	model	has	been	developed	

for	solving	two-dimensional	Euler’s	equations.	Finite	volume	
method	is	adopted	for	solution	of	the	coordinate	free	governing	
equations.	The	drag	coefficient	is	predicted	using	the	developed	
model	under	subsonic,	transonic,	and	supersonic	flow	regimes.	
It	is	shown	that	round-tailling	of	projectile	reduces	the	drag	by	
90	per	cent	for	the	subsonic	case,	and	by	75	per	cent	for	the	
transonic	case.	It	has	also	been	observed	that	pressure	variation	
along	the	surface	of	the	projectile	is	similar	for	subsonic	and	
transonic	 cases	while	 the	 variation	 changes	 significantly	 for	
supersonic	 case,	 owing	 to	 the	 high-speed	 flow.	As	 a	 result,	
the	calculated	drag	coefficient	for	three	cases	comes	out	to	be		
0.018,	0.089,	and	0.395.
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