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NOMENCLATURE

 1φ  	Coefficient	of	viscosity																
 ga (s)				Retarded	history
 Ai  Acceleration component in the ith  coordinate
 L  Characteristic length
 3φ 	 	Coefficient	of	cross-viscosity
 2φ 	 	Coefficient	of	elastico-viscosity
 ρ 	 	Density	of	the	fluid
 ia   Dimensionless acceleration component in the ith 

direction
 cυ 	 	Dimensionless	cross	viscosity	parameter
 L1	 	Dimensionless	elastico-viscosity	parameter
 F  Dimensionless external force applied
 m  Dimensionless magnetic parameter
 p	 	Dimensionless	indeterminate	hydrostatic	pressure
 L2	 	Dimensionless	porosity	factor
 ui	 	Dimensionless	 velocity	 component	 along	 the	 ith 

coordinate
 g(s)	 	Given	history
 M  Magnetic parameter
 P	 	Indeterminate	hydrostatic	pressure
 α   Retardation factor
 S   Stress tensor
 T  Time parameter
 Ui	 	Velocity	component	in	the	ith direction

1. INTROdUCTION 
Flow through porous medium has been the subject of 

considerable	 research	 activity	 in	 recent	 years	 because	 of	
its	 several	 important	 applications,	 notably	 in	 the	 flow	 of	 oil	
through	 porous	 rocks,	 the	 extraction	 of	 geothermal	 energy	
from	 the	deep	 interior	of	 the	earth	 to	 the	shallow	 layers,	 the	
evaluation	of	 the	capability	of	heat	 removal	 from	particulate	
nuclear	fuel	debris	that	may	result	from	a	hypothetical	accident	
in	a	nuclear	reactor,	the	filtration	of	solids	from	liquids,	flow	of	
liquids	 through	 ion-exchange	beds,	drug	permeation	 through	
human skin, chemical reactor for economical separation or 
purification	of	mixtures,	and	so	on.

In	many	chemical	processing	industries,	slurry	adheres	to	
the reactor vessels and gets consolidated. As a result of this, 
the chemical compounds within the reactor vessel percolates 
through the boundaries causing loss of production and the 
consuming more reaction time. In view of such technological 
and industrial importance wherein the heat and mass 
transfer	 takes	place	 in	 the	chemical	 industry,	 the	problem	by	
considering	 the	permeability	of	 the	bounding	surfaces	 in	 the	
reactors attracted the attention of several investigators. An 
important	application	is	in	the	petroleum	industry,	where	crude	
oil is tapped from natural underground reservoirs in which oil 
is	entrapped.	Since	the	flow	behaviour	of	fluids	in	petroleum	
reservoir rock depends, to a large extent, on the properties of the 
rock,	techniques	that	yield	new	or	additional	information	on	the	
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characteristics of the rock would enhance the performance of 
the petroleum reservoirs. A related bio-mechanical application 
is	the	flow	of	fluids	in	the	lungs,	blood	vessels,	arteries,	and	so	
on,	where	 the	fluid	 is	bounded	by	two	layers	which	are	held	
together	by	a	set	of	fairly	regularly	spaced	tissues.			

Viscous	 fluid	 flow	 over	 wavy	 wall	 has	 attracted	 the	
attention	 of	 relatively	 few	 researchers	 although	 the	 analysis	
of	 such	 flows	 finds	 applications	 in	 different	 areas,	 such	 as	
transpiration	cooling	of	re-entry	vehicles	and	rocket	boosters,	
cross-hatching	 on	 ablative	 surfaces	 and	 film	 vapurisation	 in	
combustion	chambers,	etc.	especially,	where	the	heat	and	mass	
transfer	 takes	 place	 in	 the	 chemical	 processing	 industry,	 the	
problem	by	considering	the	permeability	of	the	bounding	surface	
in	 the	 reactors	 assumes	greater	 significance.	many	materials	
such	 as	 drilling	 muds,	 clay	 coatings	 and	 other	 suspensions,	
certain	oils	and	greases,	polymer	melts,	elastomers	and	many	
emulsions	have	been	treated	as	non-Newtonian	fluids.	Because	
of	the	difficulty	to	suggest	a	single	model,	which	exhibits	all	
properties	of	non-Newtonian	fluids,	these	cannot	be	described	
simply	as	Newtonian	fluids	and	there	has	been	much	confusion	
over	the	classification	of	non-Newtonian	fluids.	however,	non-
Newtonian	fluids	may	be	classified	as	
(i)	fluids	for	which	 the	shear	stress	depends	only	on	 the	rate	
of	shear;	
(ii)	fluids	for	which	the	relation	between	shear	stress	and	shear	
rate	depends	on	time;	
(iii)	 the	 visco-elastic	 fluids,	 which	 possess	 both	 elastic	 and	
viscous properties.

Because	 of	 the	 great	 diversity	 in	 the	 physical	 structure	
of	 non-Newtonian	 fluids,	 it	 is	 not	 possible	 to	 recommend	 a	
single	constitutive	equation	as	the	equation	for	use	in	the	cases	
described	in	(i)	–	(iii).	for	this	reason,	many	non-Newtonian	
models	or	constitutive	equations	have	been	proposed	and	most	
of these are empirical or semi-empirical. For more general 
three-dimensional representation, the method of continuum 
mechanics is needed1.	Although	many	constitutive	 equations	
have	been	suggested,	many	questions	are	still	unsolved.	Some	
of	 the	 continuum	models	 do	 not	 give	 satisfactory	 results	 in	
accordance with available experimental data. For this reason, 
in	 many	 practical	 applications,	 empirical	 or	 semi-empirical	
equations	have	been	used.

It	has	been	shown	that	for	many	types	of	problems	in	which	
the	flow	is	slow	enough	in	the	visco-elastic	sense,	the	results	
given	by	oldroyd’s	constitutive	equations	will	be	substantially	
equal	 to	 those	of	 the	 second-or	 third-order	Rivilin-	ericksen	
constitutive	equations2. Thus, if this is the sense in which the 
solutions to which problems are to be interpreted, it would 
seem reasonable to use the second-or third-order constitutive 
equations	in	carrying	out	the	calculations.	This	is	particularly	
in	view	of	the	fact	that,	the	calculation	will	generally	be	still	
simpler.	for	 this	reason,	 in	 this	paper,	 the	second-order	fluid	
model	 is	 used.	 The	 constitutive	 equation	 for	 the	 fluids	 of	
second-grade	 (or	 second-order	fluids)	 is	 a	 linear	 relationship	
between	the	stress,	the	first	Rivlin	-	ericksen	tensor,	its	square	
and the second Rivlin-Ericksen tensor. The constitutive 
equation	has	three	coefficients.	There	are	some	restrictions	on	
these	coefficients	due	to	the	Clausius	–	Duhem	inequality	and	
the	 assumption	 that	 the	helmholtz	 free	 energy	 is	 	minimum	

in	equilibrium.	A	comprehensive	discussion	on	the	restrictions	
for	these	coefficients	has	been	given	by	Dunn3,4, et al. One of 
these	coefficients	represents	the	viscosity	coefficient	in	a	way	
similar	to	that	of	a	Newtonian	fluid	in	the	absence	of	the	other	
two	 coefficients.	 The	 restrictions	 on	 these	 two	 coefficients	
have	not	been	confirmed	by	experiments	and	the	sign	of	these	
material	moduli	is	the	subject	of	much	controversy5. In general 
the	 equation	 of	 the	 motion	 of	 incompressible	 second-grade	
fluids,	is	of	higher	order	than	the	Navier-Stokes	equation.	The	
Navier-Stokes	 equation	 is	 second-order	 partial	 differential	
equation,	but	the	equation	of	motion	of	a	second-order	fluid	is	
a	third-order	partial	differential	equation.	A	marked	difference	
between	 the	 case	 of	 the	 Navier-Stokes	 theory	 and	 that	 of	
fluids	 of	 second-grade	 is	 that	 ignoring	 the	 nonlinearity	 in	
the	Navier-	 Stokes	 equation	 does	 not	 lower	 the	 order	 of	 the	
equation;	however,	ignoring	the	higher	order	nonlinearities	in	
the	case	of	the	second-grade	fluid,	reduces	the	equation.	exact	
solutions	are	very	important	for	many	reasons.	These	provide	
a	 standard	 for	checking	 the	accuracies	of	many	approximate	
methods such as numerical and empirical. Although computer 
techniques	 make	 the	 complete	 numerical	 integration	 of	 the	
nonlinear	 equations	 feasible,	 the	 accuracy	 of	 the	 results	 can	
be	established	by	a	comparison	with	an	exact	solution.	many	
attempts	to	collect	the	exact	solution	of	the	nonlinear	equations	
for	unsteady	flow	of	second-grade	fluid	have	been	by	different	
researcher for different geometries.

Several studies of industrial and technological importance6, 
to	find	 the	solution	for	 the	problem	of	 the	exact	solutions	of	
two	dimensional	flows	of	a	second-order	incompressible	fluid	
by	 considering	 the	 rigid	 boundaries	were	 taken	 up.	 Later,	 a	
linear	analysis	of	the	compressible	boundary	layer	flow	over	a	
wall	was	presented	by	Lekoudis7, et al. Shankar8, et al. studied 
the	problem	of	Rayleigh	 for	wavy	wall	while	Lessen9, et al. 
examined the effect of small amplitude wall waviness upon the 
stability	of	the	laminar	boundary	layer.	further,	the	problem	of	
free	convective	heat	transfer	in	a	viscous	incompressible	fluid	
confined	between	vertical	wavy	wall	 and	 a	 particle	flat	wall	
was	examined	by	Vajravelu10 and Das11, et al.	Later	Patidar12, et 
al.	studied	the	free	convective	flow	of	a	viscous	incompressible	
fluid	in	porous	medium	between	two	long	vertical	wavy	walls.	
Taneja13, et al.	had	examined	the	problem	of	mhD	flow	with	
slip effects and temperature-dependent heat source in a viscous 
incompressible	fluid	confined	between	a	long	vertical	wall	and	
a	parallel	flat	plate.	murthy14, at el, examined the problem of 
elastico-viscous	fluid	of	second-order	type	where	the	bounding	
surface is porous and subjected to sinusoidal disturbances. 
Kulkarni15-16, et al.	 studied	 the	 unsteady	 poiseuille	 flow	 of	
second-order	fluid	 in	a	 tube	of	elliptical	and	spherical	cross-
section	 on	 the	 porous	 boundary.	Kulkarni17, et al. examined 
unsteady	 flow	 of	 an	 incompressible	 viscous	 electrically	
conducting	 fluid	 in	 tube	 of	 elliptical	 cross-section	 under	 the	
influence	of	magnetic	field.

In	all	the	above	investigations,	the	fluid	under	consideration	
was	 viscous	 incompressible	 fluid	 and	 one	 of	 the	 bounding	
surfaces	has	a	wavy	character	or	bounding	surface	subjected	to	
sinusoidal disturbances or circular or elliptical cross-section on 
the	porous	boundary.	In	all	of	the	above	situations,	not	much		
attention	has	been	paid	to	the	study	of	unsteady	mhD	flow	of	
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elastico-viscos	incompressible	fluid	through	a	porous	medium	
between	 two	 parallel	 plates	 under	 the	 influence	 of	magnetic	
field.	Therefore,	an	attempt	was	made	to	study	the	effects	of	the	
transverse	magnetic	field	on	the	flow	of	incompressible	viscous	
electrically	conducting	fluid	of	second-order	type	between	two	
parallel plates is considered under constant pressure gradient 
on	 the	 porous	 boundary.	 hence,	 this	 aspect	 is	 also	 studied	
and during the course of discussion both non-magnetic and 
magnetic cases have been compared. The results are expressed 
in	 terms	 of	 a	 non-dimensional	 porosity	 parameter,	 which	
depends	on	the	non-Newtonian	coefficient.	

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM
This	paper	deals	with	an	investigation	of	an	unsteady	flow	

of	a	second-order	visco-elastic	fluid	between	two	impermeable	
horizontal	 parallel	 plates	 under	 the	 influence	 of	 magnetic	
field,	separated	by	a	distance	2	h.	The	flow	is	governed	by	a	
generalised	 momentum	 equation	 which	 takes	 care	 of	 shear	
stress	 generated	 in	 the	 flow	 medium	 and	 also	 the	 inertial	
convective	 acceleration,	 apart	 from	 conventional	 Darcy’s	
resistive	force.	Initially	 the	flow	is	under	a	constant	pressure	
gradient	down	the	bounding	plates.	After	attaining	the	steady	
state,	 the	 pressure	 gradient	 is	 suddenly	 withdrawn	 and	 the	
subsequent	fluid	motion	is	investigated	by	employing	Laplace	
transform	technique.

The	problem	is	solved	 in	 two	stages;	 the	first	stage	 is	a	
steady	motion	between	the	parallel	plates	under	the	influence	
of a constant pressure gradient and the magnetic parameter. 
The	momentum	equation	is	free	of	the	visco-elastic	parameter	
while	the	Darcian	friction	would	find	its	place	in	it.	The	solution	
of the momentum at this stage will be the initial condition for 
subsequent	flows.	The	second	stage	is	an	unsteady	motion	for	
which	the	initial	velocity	is	taken	the	same	as	that	obtained	in	
earlier	stage	together	with	the	no	slip	condition	on	the	boundary	
plates. 

Cartesian coordinates (X,Y,Z) with the X -axis parallel to 
the	plates	placed	midway	between	these.	The	fluid	velocity	can	
be taken as (U(Y,T)0,0). 

( ) ( )g s g sα = α ; 0 s< < ∞ , 0 1< α ≤                         (1)
whereα  being termed as a retardation factor. Assuming that 
the stress is more sensitive to recent deformation than to 
the	 deformations	 at	 distant	 past,	 it	 has	 been	 established	 by	
Coleman19, et al.	 that	 the	 theory	 of	 simple	 fluids	 yields	 the	
theory	of	perfect	fluids	as	 0α → 	and	that	of	Newtonian	fluids	
as a correction (up to the order of  α )	 to	 the	 theory	 of	 the	
perfect	fluids.	Neglecting	all	the	terms	of	the	order	of	higher	
than 2 in α ,	we	have	incompressible	elastic-viscous	fluid	of	
second-order	type	whose	constitutive	relation	is		governed	by:

2(1) (2) (1)
1 2 3ij ij ijS PI E E E= − + ϕ + ϕ + ϕ                          (2)

where
(1)

, ,ij i j j iE U U= +
                                                           (3)

and   
(2)

, , , ,2ij i j j i m i m jE A A U U= + +                                        (4)

The constitutive relation for general Rivlin20, et al.	fluid	
also	 reduces	 to	eqn	 (2)	when	 the	 squares	 and	 higher	 orders	
of (2)E are	 neglected,	 while	 the	 coefficients	 being	 constant.	
Also	the	non-Newtonian	models	considered	by	Reiner21 could 
be	obtained	from	eqn	(2)	when	 2 0φ =  and naming 3φ  as the 
coefficient	of	cross	viscosity.	with	reference	to	the20	fluids,	 2φ  
be	called	as	the	coefficient	of	elastico-	viscosity.	

The	Clausius	-	Duhem	inequality	and	the	assumption	that	
the	helmholtz	free	energy	is	minimum	in	equilibrium	provides	
the following restriction3.

1 0φ ≥ , 2 0φ ≥ , 1 2 0φ + φ =

The condition 1 2 0φ + φ = is	consequence	of	the	Clausius-
Duhem	 inequality	 and	 the	 condition	 2 0φ ≥  follows the 
requirement	 that	 the	 helmholtz	 free	 energy	 is	 minimum	 in	
equilibrium.	A	 comprehensive	 discussion	 on	 the	 restrictions	
for 1 2,φ φ  and 3φ can	be	 found	 in	 the	work	 by	Dunn4, et al. 
The sign of the material moduli 1φ , 2φ  is the subject of much 
controversy5. In the experiments on several non-Newtonian 
fluids,	the	experimentalists	have	not	confirmed	these	restrictions	

1φ and 2φ .
If V 1 2 3( , , )U U U 	 is	 the	 velocity	 component	 and	 f

( , , )x y zF F F  are the body	forces	acting	on	the	system,	then	the	
equation	of	motion	in	X, Y and Z	directions	is	given	by:

1 XX XY XZ
X

DU S S SF
DT X Y Z

∂ ∂ ∂
ρ = ρ + + +

∂ ∂ ∂
                        (5)

2 YX YY YZ
Y

DU S S SF
DT X Y Z

∂ ∂ ∂
ρ = ρ + + +

∂ ∂ ∂
                           (6)

3 ZX ZY ZZ
Z

DU S S SF
DT X Y Z

∂ ∂ ∂
ρ = ρ + + +

∂ ∂ ∂
                          (7)

where

 D V V V
DT T

∂
= + ⋅∇
∂

 

If the bounding surface is porous, then the rate of 
percolation	 of	 the	 fluid	 is	 directly	 proportional	 to	 the	 cross-
sectional	area	of	the	filter	bed	and	the	total	force,	say	the	sum	

In the sense of Noll18 a simple material is a substance 
for which stress can be determined with entire knowledge of 
the	history	of	 the	 strain.	This	 is	 called	 simple	fluid,	 if	 it	has	
property	that	at	all	local	states,	with	the	same	mass	density,	are	
intrinsically	equal	in	response,	with	all	observable	differences	
in	 response	 being	 due	 to	 definite	 differences	 in	 the	 history.	
for	any	given	history ( )g s ,	a	retarded	history		 ( )g sα  can be 
defined	as:

Figure 1. Schematic of the problem.
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of	the	pressure	gradient	and	the	gravity	force.		In	the	sense	of	
Darcy2.

 1 2

1 2
( )

P Pq CA G
H H

−
= +ρ

−
                                                (8)

where A is	 the	 cross-sectional	 area	 of	 the	 filter	 bed,	 kC =
µ

 
in which k 	 is	 the	 permeability	 of	 the	 material	 and	 µ  is 
the	 coefficient	 of	 viscosity	 and	 q 	 is	 the	flux	of	 the	fluid.	A	
straightforward	generalisation	of	eqn	(8)	yields. Vη

V [ ]k P G= ∇ +ρ η
µ

-                                                      (9)

where	the	velocity	vector	V and η  is the unit vector along 
the gravitational force. If other external forces are acting on the 
system,	instead	of	gravitational	force,	then	one	has	

- [ ]kV P F= ∇ −ρ
µ

                                                        (10)

In the absence of external forces, kV P= ∇
µ

-  this gives 

P V
k
µ

∇ = −

Therefore,	the	net	resulting	equations	(in	the	dimensional	
form) of motions in the X, Y and Z directions and when the 
bounding	surface	is	porous,	are	given	by

1
1

XX XY XZ
X

DU S S SF U
DT X Y Z k

∂ ∂ ∂ µ
ρ = ρ + + + −

∂ ∂ ∂
            (11)

2
2

YX YY YZ
Y

DU S S SF U
DT X Y Z k

∂ ∂ ∂ µ
ρ = ρ + + + −

∂ ∂ ∂
             (12)

3
3

ZX ZY ZZ
Z

DU S S SF U
DT X Y Z k

∂ ∂ ∂ µ
ρ = ρ + + + −

∂ ∂ ∂
             (13)

Introducing the following non-dimensional variables as:

1 i
i

u
U

L
φ

=
ρ

 
2

1

L tT ρ
=

φ
   2

2 1L Lφ = ρ        
2
1

2
pP

L
φ

=
ρ

   

i
i

X
x

L
=

    
i

i
Y

y
L

=       2
3 cLφ = ρ υ  

2
1
2 3

i
i

a
A

L
φ

=
ρ

2
1 ,

, 2
i j

i j
s

S
L

φ
=

ρ
  

(1)
1 ,(1)

, 2
i j

i j
e

E
L

φ
=

ρ   

2 (2)
1 ,(2)

, 2 4
i j

i j
e

E
L

φ
=

ρ
   

3

2
1 2

Lk
L

ρ
=
φ

2
1
3i iF f

L
φ

=
ρ

     1
2
mM

L
φ

=

we	consider	a	class	of	plane	flows	given	by	the	velocity	
components 

1 ( , )u u y t= and 2 0u =                                                  (14)       
In the directions of rectangular Cartesian coordinates x 

and y,	the	velocity	field	given	by	eqn	(14)	identically	satisfies	
the	incompressibility	condition.	The	stress	can	now	be	obtained	
in the non-dimensional form as:

2( )xx c
us p
y
∂

= − + υ
∂

                                                     (15)

2( 2 )( )yy c
us p
y
∂

= − + υ + β
∂

                                           (16)

( )xy
u us
y y t
∂ ∂ ∂

= +β
∂ ∂ ∂

                                                   (17)

In view of	 the	 above,	 the	 equations	 of	 motion	 in	 the	
present	case	of	porous	boundary	will	yield

X - Component:

  
2 2

12 2
2

1( ) ( )u p u uL m u
t x t Ly y

∂ ∂ ∂ ∂ ∂
= − + + − +

∂ ∂ ∂∂ ∂
             (18)

Y - Component                                       

20 (2 ) ( )c
p u
y y y
∂ ∂ ∂

= − + β+ υ
∂ ∂ ∂                                      (19)

Z - Component

20 (2 ) ( )c
p u
z z z
∂ ∂ ∂

= − + β+ υ
∂ ∂ ∂

                                     (20)

The	eqn	(18)	shows	that		 p
x
∂

−
∂

 must be independent of 

space variables, and hence,	may	be	 taken	 as	 ( )tξ .	eqn	 (19)	
now	yields.

 2
0 ( ) ( ) ( 2 )( )c

up p t t x
y
∂

= − ξ + υ + β
∂

                                             

0p
y
∂

=
∂

 and 0p
z
∂

=
∂

Showing that ( )p p x= .	 Therefore	 eqns	 (18),	 (19)	 and	
(20)	reduce	to	single	equation.	The	flow	characterised	by	the	
velocity	is	given	by:

2 2

12 2
2

1( ) ( )u dp u uL m u
t dx t Ly y

∂ ∂ ∂ ∂
= − + + − +

∂ ∂∂ ∂
               (21)

where 2L 	is	the	non-dimensional	porosity	parameter,	it	may	be	
noted that the presence of 1L  changes the order of differential 
from two to three. 

Comparing	 the	 terms	from	the	above	eqn	(21)	one	gets	
steady	and	unsteady	problems.	The	steady	state	is	given	by	the	
following	equation.

2

2
1 1( ) 0p u M u

x ky
∂ ∂  − + − + = ρ ∂ ∂  

                                 (22)

The	unsteady	state	problem	from	the	eqn	(21)	is	given	by	
following	equation.

3

1 2
2

1( )u UL m u
t LT Y

 ∂ ∂
= − + ∂ ∂ ∂  

                                  (23)

The	boundary	conditions	are	
0u =  when 1y =  and 0u =  when 1y = −                (24)

                                                         
3. SOLUTION OF THE PROBLEM

Case (i) Steady State:	on	solving	the	eqn	(22)	by	applying	
Laplace	transformation	with	the	boundary	conditions	are	given	
by	eqn	 (24),	we	 get	 the	 initial	 velocity	 (as	 the	 visco-elastic	
parameter L1 disappears) 
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Case (ii) Unsteady State:	The	unsteady	state	problem	is	
given	by	eqn	 (23).	The	presence	of	L1 increase in the order 
of	 differential	 eqn	 (23)	 from	 two	 to	 three.	 Three	 boundary	
conditions	 are	 required	 to	 solve	 eqn	 (23).	 Therefore,	 the	
solution	of	steady	state	is	used	as	the	initial	condition	along	with	
the	boundary	conditions.	on	applying	Laplace	transformation	
to	the	eqn	(23)	with	the	initial	condition	as	given	by	eqn	(25)	
together	with	boundary	conditions	as	given	in	eqn	(24),	then	
eqn	(23)	becomes;
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where 2 2

2 1

( ) 1
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+ +
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+
on	 solving	 eqn	 (26)	 together with 

the	boundary	conditions,		 ( 1, ) 0u y s= ± = one gets.
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where  2
1 2

2( ( ) 1( )r r
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+ + +
on	 applying	 the	

inverse	Laplace	transformation	for	the	eqn	(27),	one	gets	the	
velocity	as
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mass	flow	rate	is	given	by									
1

1

Q udy
−

= ∫

4. CONCLUSIONS
In this paper, research was carried out to show the effect 

of	the	applied	pressure	gradient	and	magnetic	field	on	unsteady	
flow	 of	 a	 fluid	 of	 second-order	 type	 with	 bounding	 surface	
is	porous	under	 the	 influence	of	magnetic	field	between	 two	
parallel	plates.	The	solution	was	obtained	by	applying	Laplace	
transform	and	Inverse	Laplace	transform	method.	As	 0m → ,  
the	results	obtained	for	the	velocity	field	are	in	agreement	to	
that of Gnana23, et al.	 The	 case	 of	 Newtonian	 fluid	 can	 be	
realised as 0β→ and 0m → .

Initially	the	flow	was	under	a	constant	pressure	gradient,	
and	 hence,	 the	 velocity	 profiles	 were	 parabolic	 type	 and	
symmetric	 about	 the	 channel	 –	 centralline.	 The	 pressure	
gradient	 was	 suddenly	 withdrawn	 and	 subsequent	 flow	 was	
investigated. 

5. RESULT ANd dISCUSSION
The	effect	of	magnetic	parameter	on	the	velocity	profile	

has	 been	 illustrated	 in	 the	 fig.	 2.	 for	 a	 nonzero	 value	 of	
elastico-viscosity,	porosity	and	time	parameter,	as	the	magnetic	
parameter	increases,	velocity	decreases.	This	is	due	to		the	fact	
that	with	the	introduction	of	transverse	magnetic	field	normal	
to	the	flow	direction,	have	tendency	to	create	a	drag	like	Lorenz	
force	which	tends	to	retard	the	flow,	hence	velocity	decreases.

Figure 3 represents the effect of different values of 
porosity	on	velocity	profile.	As	the	porosity	increases,	velocity	
decreases	in	the	boundary	layer	which	is	in	agreement	with	the	
natural phenomenon.

In	 the	 fig.	 4,	 the	 effect	 of	 porosity	 on	 velocity	 profile	
is	 shown.	for	 nonzero	values	of	 elastico-viscosity,	magnetic	
parameter	 and	 zero	 value	 of	 time	 parameter.	 The	 backword	
flow	 is	noticed	 in	 the	boundary	 layer.	This	 is	because	of	 the	
Darcian friction that would appear in it.

It has been noticed in Fig. 5, as time parameter increases, 
the	velocity	profiles	are	significantly	distributed	and	the	flow	
settles down in the core region.

The	effects	of	various	parameters	on	the	mass	flow	rate	
have been illustrated in Fig. 6. For a constant value of the 
porosity	factor,	as	the	elastico-viscosity	increases,	the	flow	rate	

Figure 2. Unsteady state velocity for different values of magnetic 
parameter m with time.
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Figure 8.  Mass flow rate for different values of time.

Figure 7. Flow rate  for di f ferent  values  of  magnet ic 
parameter.

Figure 6.  Flow rate for different values of L2.

Figure 5. Unsteady state velocity for different values of time.

Figure 4. Steady state velocity for different values of L2 with 
time t=0.
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Figure 3. Unsteady state velocity for different values of L2 with 
time t=0.5.
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decreases at the lower plate and the reverse trend is observed 
in the upper plate. 

It is observed from the Fig. 7, that the magnetic parameter 
increases	and	flow	rate	decreases.	 It	agrees	with	 the	realistic	
nature	of	the	fluid	motion.	

The	 effect	 of	 the	 mass	 flow	 rate	 on	 time	 parameter	 is	
noticed	in	fig.	8.	As	the	time	parameter	increases,	the	flow	rate	
decreases after 0.5t = and	backward	flow	is	observed.	Such	an	
effect	can	be	attributed	to	the	increase	in	density	of	the	medium	
and	the	resistance	offered	by	the	bounding	surfaces.
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