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1. INTRODUCTION
Computer-aided design of passive RF and microwave 

components has advanced slowly but steadily over the past 
four decades. However, in the last decade the rising demand 
for highly integrated transceivers for wireless, RF and optical 
applications, low cost radio frequency integrated circuits 
(RFICs), and multi-Gigahertz processors has generated 
tremendous requirement for efficient and accurate modelling 
of on-chip and off-chip passive components and interconnects. 
In system integration, the impact of packaging and signal 
integrity issues are other aspects that need attention to achieve 
proven designs/goals. Electromagnetic solvers are considered 
as the best tools for such analysis in RF and high speed designs 
and are equally important in parasitic extraction space.

Parasitic include interconnect parasitics as well as 
coupling among passive devices, interconnects themselves and 
ground planes. Furthermore, the layout density and GHz range 
operating frequency introduces numerous high frequency 
effects including time retardation, the skin effect, substrate 
effects and frequency resonances. It is essential to accurately 
predict parasitics and the numerous high frequency effects 
while designing RF circuits.

Various electromagnetic solvers are available in the 
current market to analyse, two dimension (2-D), two and a 
half dimension (2.5-D), which covers the wire bonds of an 
RFIC and three dimension (3-D) structures. There is always a 
trade-off between the accuracy and efficiency of these solvers. 
Designers as well as tool developers require the knowledge 

of different solving algorithms, methods, and applications 
of 2-D to 3-D solvers in the design to make an exact trade-
off for efficient and accurate modelling. Amongst the many 
computational techniques present to implement the solver 
method, one way is finite difference time domain (FDTD). 
Finite difference time domain is one such solver technique 
which gives dynamic simulation using the finite differencing 
method efficiently implementing the Maxwell’s equations. 
The superiority of FDTD over other computational techniques 
is the fact that it covers a very wide spectral range unlike 
FEM, MoM, etc. Amongst the other advantages of FDTD, a 
major key point is the simplicity of its implementation. Still 
at 2-D analysis level, it is comparatively faster and gives more 
accurate results. 

One of the key areas of research in FDTD has been identified 
as efficient implementation of perfectly matched layer (PML) 
and absorbing boundary condition (ABC) under dispersive 
material9. Dispersive metal behaviour for the description of 
frequency dependent behaviour of the susceptibility function 
of materials has also been studied using FDTD. Modified 
PML technique for such materials is an active area of research. 
FDTD also becomes computationally intensive when it comes 
to 3-D simulation due to excessive meshing which gives rise 
to truncation or staircase error. Even at THz frequency the 
PML implementation3 with dispersive metal introduces error 
in the calculations. Truncation error remains due to the residual 
reflections generated by ABC. Some techniques12 have been 
devised using geometry rearrangement technique (GRT), 
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where by estimating the boundary reflection; the characteristic 
impedance calculations can be corrected.

This study addresses the development of a one 
dimension-based code and further identifies better ABC to 
increase the efficiency of the algorithm to be implemented. 
Authors successfully tested the code on a one dimension wave 
impinging perpendicularly on a dielectric interface and also 
applied on an EM wave propagating through a dielectric slab 
and successfully calculated the transmission coefficients for 
both the cases. The results have also been matched with the 
theoretical solutions generated through it. 

2. YEE LATTICE AND FINITE DIFFERENCE 
TIME DOMAIN
The FDTD method has become a popular tool for the 

world of electromagnetic solvers due to its simplicity of 
implementation and easier comprehensibility. The FDTD 
method, first introduced by Yee1 in 1966 and later developed 
by Allen Taflove2, is a direct solution to the Maxwell’s time 
dependent curl equations. The finite difference time domain 
method has widespread applications in the fields of:

Aperture penetration(a) 
Antenna/radiation problems(b) 
Microwave circuits(c) 
Eigen value problems(d) 
EM absorption in human tissues (bioelectromagnetics).(e) 

In 1966, Yee originated a set of finite difference equations 
for the time-dependent Maxwell’s curl equation systems for 
the lossless materials σ*=0 and σ=0.

The Yee algorithm may be summarised as:
It solves for both electric and magnetic fields in time and • 
space using the coupled Maxwell’s curl equations, instead 
of simplifying electric and magnetic field alone with a 
wave equation.
It centers in • E and H components in three dimensional 
spaces so that every E component is surrounded by four 
other H components circulating it and similarly, every H 
component is circulated by four other E components.
It also centers its • E and H components in time, in what is 
called as leapfrog arrangement. According to the leapfrog 
method, all E fields are computed at a given point of time 
stepping using previously stored values of H field and 
similarly at the next time step, all values of H fields are 
calculated using previously stored values of E fields. This 
process continues until all time steps are over.

3. ONE DIMENSION FORMULATION AND 
IMPLEMENTATION
The time dependent Maxwell’s curl equations is given as 

under: BE
t

∂
∇ × = −

∂          
f

DH J
t

∂
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∂                                                           (1)
For static case and for one dimension we have only one 

component of electric field say Ez and correspondingly we have 
Hy. Implementing the central difference method we get,
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The above is the simplest representation of a one 
dimensional wave equation.

3.1 Implementation Issues
In the Eqn (2), time is specified by the superscripts, i.e., 

n which actually means a time t = Δt • n. We have to keep in 
mind that we have to discretize everything for formulation into 
the computer. The term ‘n + 1’ means one time step later. The 
terms in parentheses represent distance, i.e., i actually means the 
distance z = Δz • i, since Δz represents the discretisation in the 
spatial z axis. The concept of interleaving between the E & H 
field by Yee for a one dimensional wave is as shown in Fig.1 

Figure 1. Time stepping in E & H for one dimension field.
 

Figure 1 tells that every calculation of Hy is dependent 
on the previously stored values of Ez and similarly every Ez 
is calculated based on the previously calculated values of 
Hy. Although the one dimension scalar wave equation can be 
solved directly by centered 2nd differences, it is not robust for 
solutions of problems that depend on E & H. Hence the Yee 
lattice is always a better choice for dynamic approximation14.

It is worthy to note that while implementing the codes, 
time is implicit and the space coordinates are to be declared 
explicitly. Also while implementing the half time step concept 
through a programming style, we convert the ‘n+1/2’ into 
‘n’ and ‘n–1/2’ into ‘n–1’. Hence the sets of equations gets 
accordingly modified and the corresponding MATLAB codes5 
are written as:

Ez(i) = Ez(i)+(dt/(eo*dx))*(Hy(i)-Hy(i-1))                    (3)

Hy(i) = Hy(i)+(dt/(uo*dx))*(Ez(i+1)-Ez(i))                  (4)
The above iteration runs for the time steps mentioned in n 

and for all the spatial coordinates specifies by i. Here we have 
chosen i to vary for a 500 time steps.

Since we have a regular rectilinear geometry, hence, 
Cartesian coordinate system has been successfully used. 
However, for curved surfaces7 using rectilinear coordinate 
system would give rise to truncation and approximation error. 
So, we need to apply FDTD in cylindrical or circular coordinate 
system.

3.2 Problem Statement
The above FDTD code has been developed for a simple 
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electromagnetic problem, with a one dimension wave impinging 
perpendicularly on a loss less dielectric slab. When a plane 
wave from one medium impinges on a different medium, it is 
partly reflected and partly transmitted. The proportion of the 
incident wave that is reflected or transmitted depends on the 
consecutive parameters (ε, μ, σ) of the two media involved. 
Here we have assumed that the incident wave plane is normal 
to the boundary between the media.

The reflection coefficient (Г) and transmission coefficient 
(τ) are calculated as:

1 2

1 2

r r

i i
H E
H E
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where η1 = √(μ1/ε1) and η2 = √(μ2/ε2). Assuming perfect 
dielectrics15 μ1 = μ2 = μo,
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3.2.1 Algorithm for the Implementation and Simulation
In order to exactly simulate the above problem we have 

to place our source at the boundary of the considered frame 
and then generate the pulse. In MATLAB, we have used a sine 
modulated Gaussian pulse as the source generated at the spatial 
position i = 1. The complete spatial region has been divided 
into 500 spatial points and the pulse is generated for duration 
of 100 time steps or 5 ns. The wavelength in free space for 
operation is λ0 = 0.3m. Now dx = λ0/20 and dt = dx/c, where c 
is the speed of light, i.e. 3 х 108 ms-1. Thus, we get dx = 0.015 
m and dt = 0.05 ns. The MATLAB equivalent is

Ez(1) = (sin(2*3.14*f0*n*dt))*
             exp(–(n*dt–tc)*(n*dt–tc))/(2*sigma*sigma));
As Maxwell’s equations clearly state that every electric 

field component has an associated magnetic field component 
also, hence though the excitation is of an electric field, the 
magnetic field is consequently generated.

The source wave would now travel through the free space. 
For the implementation of the problem statement, authors 
assumed that air is present from i = 1 to i = 250 and i = 251 to        
i = 500 is a dielectric with permittivity εr= 4ε0. Hence, as the EM 
wave impinges on this dielectric surface there are going to be 
some reflections and some transmission of the incident wave in 
both electric and magnetic fields. The reflected and transmitted 
wave would now travel towards the computational boundaries 
to simulate the real time environment. As the first dielectric is 
air itself, hence in the dielectric 1, the phase velocity is 

vp=c                                                                              (11)

but in the dielectric the phase velocity will decrease by a 
fraction of square root of the relative dielectric constant of the 
dielectric medium. Hence in the 4ε0 i.e. dielectric 2, the phase 
velocity of the electromagnetic wave reduces by:

vp=c/√εr = c/√4 = c/2                                                    (12)
The same thing can well be seen in the simulation. The 

simulation also shows that since the reflected wave is in the air 
medium hence it covers more distance in a fixed time whereas 
the transmitted wave covers shorter distance in the same 
stipulated time period.

To record the observations of the different wave 
conditions, author placed a probe at spatial position of i = 350. 
This probe records all data pertaining to transmitted wave that 

Figure 3. Reflection and transmission from the dielectric interface 
in electric and magnetic field from i = 251.

Figure 2. Sine modulated Gaussian pulse as the incident wave 
at 139 time steps. The dark line at i = 250 shows the 
variation in the dielectrics. From i = 1 to i = 250 is 
air and i = 251 to i = 500 is dielectric of permittivity 
4ε0. At i = 350 the dot represents the placement of 
the probe.
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passes through the dielectric medium 2. The same is illustrated 
in Figs. 2 and 3.

3.3 Implementation on Dielectric Slab and Results
This problem statement verifies the correctness of the 

code. Suppose, we have an electromagnetic wave which falls 
perpendicularly on a dielectric slab of some finite thickness. 
Now, once the EM wave strikes the dielectric from air 
medium, it will have some transmission and some reflection. 
The transmitted wave would continue its journey inside the 
dielectric medium. At the edge of the dielectric medium, again 
there will be partly reflection and partly transmission. 

Hence, this process would continue for a very long 
time, until the value of the wave trapped inside the dielectric 
considerably reduces. In such a case when we measure the 
Transmission coefficient, we find that it follows a periodical 
pattern due to constant transmissions and reflections. The above 
has been verified using the one dimensional code for FDTD 
implementation for a dielectric slab of 4ε0 and whose width is 
50 spatial steps or 5λg. The probe to record all observations is 
placed at i = 350.

However, the absorbing boundary condition applied at 
both the ends is specifically terminated in air. This is shown 
in Fig. 4.

to be placed between the PML and then put to simulation for 
accurate results.

In our case, we have implemented the first order Mur 
radiation boundary8 which is comparatively an easier method 
of implementation and generates reasonably accurate results 
for the defined problem statement. Now suppose that we are 
simulating a simple plane wave propagating in the forward 
direction, we need to place the Mur I ABC at the last node of 
the electric field (M) as follows:

1 1( 1) ( ) ( 1) ( )zM zM zM zM
c t zE n E n E n E n
c t z− −
∆ − ∆

+ = + + −
∆ + ∆

(13)
To place the first order Mur radiation boundary at node 1 

or the first electric field node on the left:

1 2 2 1( 1) ( ) ( 1) ( )z z z z
c t zE n E n E n E n
c t z
∆ −∆

+ = + + −
∆ + ∆

      (14)

Assuming the magic time step of cΔt = Δz, the maximum 
allowed by the stability condition, the truncation conditions 
reduce to:

EzM (n+1) = EzM-1 (n)                                                      (15)

Ez1 (n+1) = Ez2 (n)                                                         (16)
All the above equations imply that an electromagnetic 

wave traveling in free space (with magic time step) with 
the velocity of light c, will take one time step to cross one 
step in the space discretization. Hence, Eqn (15) is a perfect 
implementation in the case when we are simulating the ABC 
for the reflected wave. 

Comparison to time domain integral equation 
(TDIE) method, FDTD-based PML holds more validity 
on  approximation involving multiple or in-homogeneous 
medium10. Moreover, FDTD is a better implementation for 
complex body or shape analysis than TDIE. For curved surfaces6 
gives a novel way of applying ABC-based on Liao’s method and 
discusses minimizing reflections with better approximations 
at the curved surfaces or corners of a computational grid. A 
recent Mur based ABC13 uses 1/3rd time stepping method for 
one dimensional FDTD code and so is generating 3 steps of 
iteration instead of conventional 2 step method. This in turn 
exhibits extremely low reflections from the boundary.

However, in the case of transmitted wave, the 
electromagnetic wave is travelling from the air to dielectric 
medium and hence the ABC needs suitable modifications. It 
has been well cited that inside the dielectric of 4ε0, velocity 
of the electromagnetic wave is restricted to c/2, where c is the 
speed of light in free space. Now bearing in mind the analogy 
just mentioned, with magic time stepping and c/2 velocity of 
propagation, the EM wave would take two time steps to cover a 
step in space discretization. The same sounds reasonable since 
Sadiku14 also mention that, if we simulate the lattice truncation 
in a dielectric medium of refractive index m, ABC is:

Ez0(n) = Ez1(n–m)                                                          (17)

EzM(n) = EzM-1(n–m)                                                       (18)
Following Eqn (13), we can assume that ABC over a 

dielectric interface may be given as:

Figure 4. The trapped wave in the dielectric medium between 
spatial coordinates of i = 250 and i = 300. Further, 
the reflected and transmitted waves generated from 
the dielectric medium are also clearly visible. The 
reflected and the transmitted wave head towards 
the end of computational domain considered. The 
dielectric slab has a permittivity of 4ε0. The probe to 
record data of transmitted wave is placed at i=350.

3.4 Radiation or Absorbing Boundary Condition
A perfectly matched layer (PML) Condition3, generates 

minimum reflection and hence generates almost accurate 
results compared to other methods. However, PML is 
generally applied in very complex structures where extremely 
high accuracy is anticipated. While calculating the specific 
absorption rate (SAR)4, the object, which is the head needs 
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EzM(n) = EzM-1(n–√εr)                                                     (19)
The above equation has been simulated for our mentioned 

problem statement and it works with reasonable accuracy.
Figure 5 shows that Mur I ABC works properly for the 

air interface region and the ABC applied at the right or the 
terminating edge of the dielectric where the transmitted wave 
is truncated. Further it illustrates that there is minimal or no 
reflection taking place from the edges on the application with 
the new boundary condition. The simulation is completed after 
970 steps or 48.5 ns. Hence it has been verified that the radiation 
boundary condition devised over the dielectric interfaces work 
well within limits.

4. RESULTS AND DISCUSSIONS
The FFTs calculated of the recorded wave for the mentioned 

case of 3.2 are as shown in Fig. 6. The transmission coefficient 
is calculated by simply taking a ratio of the Fourier transform 
of the Transmitted pulse to that of the Fourier transform of the 
Incident pulse. The theoretical values are calculated using Eqns 
(7) to (10) with the data ε1= ε0 and ε2= 4ε0, we find out that the 
ratio for transmission coefficients have the following values:
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The ratio of the Fourier transforms of electric and magnetic 
fields compared with the theoretical values and its comparison 
with the Mur I ABC are as shown in Figs 7 and 8. 

Figures 7 and 8 show that more accuracy is achieved with 
the modified Mur I ABC compared to the implementation of 
Mur I ABC. The above results clearly show that the simulation 
results are well within range of the theoretical value. We had 
specified the wavelength of 0.3 m or 1 GHz frequency and we 
can verify that we get accurate results till 1 GHz.

The implementation of the dielectric slab problem has 
been verified using the following equation:

12 23
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12 231
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i
t t c

t
r r e

b

b=
+                                                            (20)

The above equation is a standard result and verified16. 
Based on the above result, our simulation also matches 
correctly and result also matches appropriately. Figure 9 shows 
the Fourier transforms of the incident and reflected waves and 
Fig. 10 shows the transmission coefficients calculated.

Figure 5. Beginning of the absorption at the dielectric interface 
end.

Figure 6. The dotted lines are the FFT of the incident pulse and hard line is FFT of transmitted 
of electric field.
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Figure 7. The star marked line is transmission coefficient using the theoretical value and straight line (red) is from simulation for the 
electric field using proposed ABC and the green line is from simulation for electric field using Mur I ABC termination.

Figure 8. The star marked line is transmission coefficient using the theoretical value and straight line (red) is from simulation 
for the magnetic field using proposed ABC and the green line is from simulation for magnetic field using Mur I ABC 
termination.

Figure 9. The dotted lines represent the Fourier transform of the incident wave and the hard line represents the Fourier transform 
of the transmitted wave recorded from i = 350 spatial point of the electric fields.
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5. CONCLUSIONS
This study implements the concepts of finite difference 

time domain method to a one dimensional electromagnetic 
wave problem. While implementing the absorbing boundary 
condition using the first order Mur condition, we have been 
able to demonstrate and devise a new way of terminating an 
electromagnetic wave on a dielectric interface only. Verification 
of the codes developed on MATLAB have been simulated and 
testified with the theoretical results available to prove that 
the codes developed give substantially suitable results. The 
new technique of the ABC implementation on the dielectrics 
has been tested for a particular case of 4ε0 and verified to get 
substantially accurate results. Verification is also done by 
calculating the transmission coefficient of a wave trapped in a 
dielectric slab piece.
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