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1.  INTRODUCTION
 With the recent development in technology, autonomous 

underwater vehicles (AUVs) are increasingly being used 
to efficiently explore  the various natural  and artificial 
environments present on seabed. The AUVs are efficient 
and effective for a variety of missions within the depths of 
waterbodies. One such AUV is the AUV SLOCUM Glider 
(ASG), manufactured by the Teledyne Webb Research2. This 
AUV boasts the following features: dynamic buoyancy, seven 
hundred and twenty hours of endurance at nominal load, and a 
capacity to work at one thousand meters of depth2.  Addressing 
the need of the study of benthic zones, this paper develops a 
simulation for the path planning of the ASG so that it may be 
used in near-bottom ocean currents. Defining the near-bottom 
ocean current are the Gully marine protected area (MPA) under 
Canada’s Oceans Act, the Gully becomes Canada’s second 
Oceans Act MPA, and the first in the Atlantic region.   

The Gully MPA regulations and accompanying regulatory 
impact analysis statement can be viewed13. The data for the 
magnitude and direction of the velocity of the ocean currents 
at near-bottom ocean depth is taken from the Bedford Institute 
of Oceanography3. The simulation is done using MATLAB 
platform. Using the above data, a cost function was developed 
which accurately describes the dynamics of the ASG and its 
interaction with the near-bottom ocean environment. Cost 
function is optimised to obtain the shortest path between the 

source node and destination node. This optimisation was 
achieved using various biologically-inspired algorithms such 
as genetic algorithm (GA), ant colony optimisation (ACO) 
algorithm and particle swarm optimisation (PSO) algorithm. 
Optimisation was also done using Q-learning technique and the 
results obtained from both the biologically-inspired algorithms 
and Q-learning techniques were compared. The results clearly 
show that the Q-learning technique is computationally less 
expensive as compared to biologically-inspired algorithms, 
also using Q-learning the environment can be simulated much 
easily. 

Since the advent of AUVs much work has been done to 
improve their path planning and obstacle-avoidance abilities. 
Eichhorn6-9, et al. published a series of works pertaining to the 
path planning and obstacle-avoidance of the ASG. They mainly 
used graph-based methods for the same. The gliders used in 
International scenario are gulper, wave, spray, and sea glider.  
Aghababa4 utilised various evolutionary algorithms for path 
planning and collision avoidance of an underwater vehicle9. 
The nature of computing of ACO algorithm was introduced by 
Dorigo5, et al. Shi and Eberhart12 gives much insight on the PSO 
algorithm. The research works is a result of an inspiration from 
the above-mentioned works and has proposed a method for 
path planning of the ASG using tabular Q-learning technique 
and have compared it with other optimisation algorithms. 
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2.  COST FUNCTION
A cost function10 was required to accurately describe the 

dynamics of the ASG and its interaction with the near-bottom 
ocean environment, especially with the near-bottom ocean 
currents. The work is inspired from the works of Eichhorn6-9 
and this research paper develops a cost function which takes 
into consideration the dynamics of the ASG, its principle of 
locomotion, and the spatially-varying velocity of ocean currents 
at near-bottom depths of the ocean. The cost function takes the 
input as the coordinates of the source node and the coordinates 
of the destination node and gives the output as time taken to 
travel from the source node to destination node. 

The time taken from source node to destination node 
denoted by T is found using the equation of kinematics:

 S=UT+ 
1
2 aT2                                                               (1)

where S is the displacement, U is the initial velocity, a is the 
acceleration, and T is the time. Now as the ASG2 has low 
cruising speed (0.2 ms-1 - 0.4 ms-1) , taking acceleration, a to 
be zero, this gives as 

T=
U
S

                                                                    (2)

here T is the time taken from source node to destination node, 
S is the distance between the source node and destination node, 
and U is the average velocity with which the AUV travels from 
the source node to destination node.  

2.1  Ocean Current Determination
The data for the near-bottom ocean current velocity is 

obtained from Bedford Institute of Oceanography. The data 
consist of the magnitude and direction of the ocean current 
velocity at various latitudes, longitudes and depths near the 
bottom surface of the ocean. These data are processed to 
obtain the values suitable for creating a realistic simulation. 
following processes are involved in obtaining of the ocean 
current values:
• Obtaining the data regarding the near-bottom ocean 

currents from Bedford Institute of Oceanography3 
• Segregating the data to obtain separate databases of ocean 

current velocity values for different latitudes, longitudes, 
and depths respectively.

• Identifying the region of interest.
• Interpolating the separate databases of latitude, longitude 

and depth, varying ocean current values using one-
dimensional interpolation functions within the range of 
the region of interest.

• The ocean current value at any particular coordinate is 
obtained by averaging the interpolated value of the ocean 
current at the required latitude, longitude, and depth.
As the data obtained has ocean current values at haphazard 

coordinates, it is necessary to interpolate within the range of 
region of interest to obtain ocean current values at regular 
intervals of the coordinates, thereby making the simulation 
more accurate.

2.2 Determination of Average Velocity
The velocity of the ASG at a particular coordinate, 

denoted by Vef depends on its cruising speed, denoted by Vc, the 
magnitude and direction of the ocean current velocity, denoted 
by Vcurrent  and the direction of the path from the previous node 
to the present node, denoted by Vpath (for the source node the 
previous node is taken as the origin). Considering the shape of 
the ASG, the interaction of the ocean currents with it can be 
approximately modelled as an intersection between a line and 
a circle or a sphere4. The point of intersection gives the Vef as 
clarified by the following Eqn:

Line: x (Vef) = Vef Vpath                                                     (3)

Circle/Sphere:  Vc
2 = ||x- Vcurrent||

2                         (4)

D = (Vpath
T. Vcurrent)

 2 + Vc
2 - Vcurrent

T
. Vcurrent                        (5)

The discriminant given by Eqn. (5) determines whether a 
particular path should be completely avoided or not, if the D 
becomes negative Vef  has no real value, hence, it would be Not 
a Number, NaN.

Vef = Vpath
T + √D, for D >0                                              (6)

Vef = NaN,            otherwise.                                       (7)

The average velocity U(t) is determined by taking the 
average of the Vef1 and Vef2, which are the effective velocities at 
source node and destination node, respectively.

1 2(    )
( )

2
ef efV V

U t
+

=                                         (8)

2.3 Calculation of Distance
The distance between the source node and the destination 

node is calculated using the distance formula.
2 2 2 (( 2 - 1) + ( 2 - 1) ( 2 - 1) )S x x y y z z= +                      (9)

where x1, y1, z1 are the coordinates of source node and x2, y2, 
z2 are the coordinates of destination node.

2.4 Dive Profile
The ASG changes its buoyancy to either ascend or descend 

within the waterbody. This defines its locomotion principle. 
Owing to its locomotion principle, the ASG has a characteristic 
dive profile which is sinusoidal in shape when observed in 
coarser approximation. As simulating the exact dive profile 
is computationally complex, we have approximated it and the 
result is a saw tooth shaped profile. For the sake of simulation 
we sample this dive profile and the discrete coordinates, thus 
obtained are given as input to the optimisation algorithms to 
establish shortest paths traversing all these points. By doing so 
we make sure that the characteristic dive profile of the ASG is 
accommodated in the path planning. The results presented in 
the paper also show that the optimised paths obtained from the 
algorithms are in sync with the dive profile of the ASG. 

Before the cost function is optimised using the various 
heuristic algorithms, it is first optimised within itself. The ASG 
can divide its path from a source node to a destination node into 
various saw tooth shaped segments owing to its dive profile, a 
function within the cost function calculates the various time 
taken for the number of segments from  one to the number 
of segments which is maximum. The minimum of the time 
taken is chosen as the final output of the cost function. As the 
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division of a single path into n number of segments can be both 
advantageous and disadvantageous for the ASG depending 
on whether it avoids highly turbulent ocean currents or not, 
the pre-optimisation takes care that all the possible cases are 
considered, hence, making the simulation more realistic and 
the path planning more efficient.

                                                         
3.  OPTIMISATION ALGORITHMS

Once the cost function is developed, various optimisation 
algorithms are used to minimise the cost function that is to 
minimise the time taken from source node to destination node 
and hence plan the shortest possible path from the source to 
the goal. Sampled discrete coordinates from the dive profile 
are chosen randomly and given to the optimisation algorithms. 
The results are observed to obey the dive profile of the ASG. 
These results are then compared. The inference from these 
comparisons is elucidated in the paper.

3.1 Genetic Algorithm
Genetic algorithm  uses the techniques such as inheritance, 

mutation, selection and crossover recurrently till only the 
fittest individual, which is analogous to the best solution 
to the cost function remains and other less fit individuals or 
less optimised solutions wither away. for implementing the 
genetic algorithm firstly, a cost function must be defined that 
can evaluate the fitness of a solution. The potential solutions 
must be represented in a particular format (binary, real, gray 
coded, etc.). The Genetic Algorithm considers these potential 
solutions of the cost function as the genes of a chromosome 
and keeps modifying these randomly to get the fittest gene 
that is the optimised solution to the cost function11. The pool 
of potential solutions is called a population. This population 
generally consists of randomly generated solutions for the 
cost function. The crossover operator selects ‘parents’ from 
this population using Roulette Wheel method11 and randomly 
recombines these to produce ‘offspring’ which are also valid 
solutions of the cost function. If these ‘offspring’ solutions 
yield better results, these survive else these are discarded. The 
mutation operator also randomly selects a candidate from the 
population and makes random modifications to it, again this 
mutated solution is checked using the cost function, and if it 
yields optimised results, it survives, else it is discarded. Thus, 
imitating the principles of natural evolution, the most optimum 
result is selected by the genetic algorithm.

3.2 Ant Colony Optimisation Algorithm
Ant colony optimisation has been inspired by the inherent 

ability of the ants to find the shortest distance between their 
nest and their goal, which is mostly the food. Ants leave a trail 
of pheromone deposits wherever they travel. Assume a case 
where one ant leaves the nest in search of food, it takes random 
steps and finally reaches the food. Now, all along those random 
paths pheromone has been deposited. Now, as is obvious, 
once the ant has reached the goal, while returning, it takes the 
shortest path, therefore the amount of pheromone deposited in 
the shortest path is more as compared to other random paths. 
Now when the subsequent ants travel to the goal, they sense 
the path with the maximum amount of pheromone. By doing 

so not only do they find the shortest path but also deposit more 
pheromones on the shortest path compensating for any loss 
in pheromone deposits caused due to evaporation. To utilise 
this trait of an ant colony in computationally optimising cost 
functions, first a set of m random solutions to the cost function 
is chosen, these m random solutions represent m ants. Now 
each ant (solution) is evaluated on the basis of the output it 
begets from the cost function. According to this evaluation 
pheromone deposit concentration linked with the route taken 
by each ant is modified using the following equation5:

τij (t)= ρ τij (t-1) + ∆ τij ; t = 1,2,3…T                            (10)
where T is the number of iterations, τij (t) is the revised 
concentration of pheromone associated with path option Iij at 
iteration t; τij (t-1) is the concentration of pheromone at previous 
iteration (t-1), ∆ τij is the change in pheromone concentration 
and ρ is the pheromone evaporation rate having a value between 
zero and one. ∆ τij is calculated using the following equation:

0m
i j k

R
fitnessk

∆τ = =∑ if option Iij is chosen by ant k    
                                                                                      (11)
∆ τij = 0            otherwise.

Here R is a constant called the pheromone reward factor and 
fitnessk is the value of inverse of the cost function for the kth 
ant (solution). After the pheromone deposit concentration is 
refreshed for one iteration, a different path is chosen for the 
next iteration, this choice of path is randomised using a roulette 
method of selecting the path. 

3.3 Particle Swarm Optimisation Algorithm
Particle swarm optimisation algorithm owes its origin to 

the behaviour of the birds in a flock while flying to reach a 
particular destination. While flying in the search space, each 
bird of the flock looks in a particular direction and also each 
bird keeps on communicating with the other birds of the 
flock. This communication helps the birds to identify the one 
member of the flock which is at the best location with respect 
to the goal. Once this bird is identified, other birds fly towards 
the best location with a velocity that depends on their current 
position. After reaching the new positions, the birds again infer 
their positions to figure out the best position, this process is 
repeated until the flock reaches its destination. In this paper,  
authors have utilised the global optimising model proposed by 
Shi and Eberhart12, given as:

Vi+1 = w * Vi + rand * C1 * (Pbest –xi) +
 rand * C2 * (Gbest –xi)                       (12)
xi+1 = xi + Vi+1                                                                                                           (13)

here Vi is the velocity of the ith member of the flock, xi is its 
position, C1 and C2 are positive constant parameters called the 
acceleration coefficients, rand is uniformly distributed random 
number generating functions that generate random numbers in 
the range [0 1], Pbest is the best position of the ith particle and 
Gbest is best position among all particles of the flock and w is the 
inertial weight. Weight factor used is given by,

max min
1 max

 -  
*i

iteration

w w
W w i

N+ = −                                        (14)

where Niteration is the maximum number of iterations and wmax and 
wmin are maximum and minimum values of w, respectively. 
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3.4 Q-Learning Technique
Q-learning is a form of reinforcement learning which 

further belongs to the super class of machine learning. A 
computer system is said to learn from a data set denoted by D  
to perform the task  denoted by T if after learning the system’s 
performance on T improves as measured by a performance 
measurement index, denoted by M. Reinforcement learning 
utilises trial and error method to learn, it takes random actions 
to make a system achieve its goal and then it obtains feedback 
in the form of rewards or penalties that determine whether the 
action taken was correct or incorrect, therefore, after a number 
of iterations, the algorithm learns which steps are beneficial and 
which are not wrt to the goal to be achieved. This paper utilises 
Tabular Q-learning Technique to optimise the path between the 
source node and goal node. To implement the Q-learning, first 
the cost function is converted to a matrix form, termed as the 
reward matrix and denoted by R. The Q matrix was initialized 
as all zeroes. Now for a large number of iterations, the Q matrix 
is modified using the following equation:

Q (state, action) = R (state, action) + 
γ. Max (Q (next state, all actions))        (15)

The initial state is the coordinates of the source node and 
the next state is chosen randomly. Then for all possible paths,  
from the next state to the goal state, are checked and given 
rewards accordingly. After some iterations, the coordinates of 
the optimised path have the highest Q values, and hence, are 
chosen as the optimised path.  

4.  RESULTS AND DISCUSSIONS
Random points sampled from the dive profile are given to 

the GA. These points include the starting node and goal node. 
The GA is programmed in MATLAB in such a way that it finds 
the shortest distance with reference to the cost function of the 
ASG, from the starting node to goal node, whilst traversing all 
the given random points and also finding its way back to the 
starting node. The results obtained show that not only does the 
GA find the shortest path, the path thus obtained also replicates 
the dive profile of the ASG. The time taken by the GA to 
compute the optimal function was 12.765700 CPU seconds. 
figure 1 clearly shows the optimised path generated by the 

GA. Similarly, random points sampled from the dive profile 
are given as input to the ACO algorithm. The starting node in 
this case is taken as origin. The ACO also gives a similar result 
with shortest path being evaluated incorporating all the random 
points given as input. The resulting path also was as expected 
from the dive profile of the ASG (evident from Fig. 2). 

Figure 1. Glider underwater flight profile optimised using 
genetic algorithm.
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Figure 2. Glider underwater flight profile optimised using ant 
colony optimisation.

Figure 3. Foxhole function optimised by PSO.
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The time taken by the ACO to compute the optimal 
function was 120.280000 CPU seconds. The fig. 2 showcases 
the optimised path generated by the ACO algorithm. The 
value of ρ is taken as 0.15. The numbers of ants used in the 
simulation was 25 and the value of R used was 0.33. figures 3, 
4, and 5 show the impact of the PSO algorithm in optimising 
Foxhole, Dejong F4 and f6 functions, respectively. It is evident 
from fig. 6 that the cost function reaches saturation as the 
generation number increases. The number of particles of the 
swarm is taken as 40, the values of C1 and C2 are set as 2.5 
each, the value of wmax is 0.1 and that of wmin is 0.9. figure 7 
shows the maximum Q value of path obtained after standard 
one thousand iterations in red colour and the other Q value of 
the tabular column shown in different colours. The coordinates 
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Figure 6. Plot of cost function vs number of generations. 
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Path following using PSO in Near-bottom Ocean Currents

Figure 5. Function f6 optimised by PSO.
X  axis  - X, Y axis – Y, Z axis – F(X,Y) 

Figure 4. Function Dejong F4 optimised by PSO.
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corresponding to the maximum Q values (in the Q matrix) 
depict the shortest path with reference to the cost function as 
optimised by the Q-learning technique. The computational 
time taken by the Q-learning was 7.466598 CPU seconds. It is 
also seen from fig. 7 that the Q values have saturated for only 
the optimised path after a standard number of iterations. The γ 
is used with a constant value of 0.8. 

5.  CONCLUSION
It can be concluded from the paper that the Q-learning 

approach is better in path planning of the ASG wrt to 
computational complexity and ease of environment 
simulation. The paper, therefore presents an effective method 
of path planning using tabular Q-learning technique. Concept 
of function approximation can be used instead of tabular 
Q-learning so as to improve computational complexity. 

Figure 7. Plot of Q values till 1000 iterations vs coordinates of path. 
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