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1. INTRODUCTION
Underwater acoustic imaging techniques and inverse 

analysis of acoustic scattering have many important 
applications such as shape reconstruction, size estimation, 
identification and classification of underwater objects. Inverse 
scattering is acquiring the size and shape of the underwater 
object, without a priori knowledge of the object by using the 
data obtained by direct scatter from the body or by computing 
the forward scatter. Forward scattering involves determining 
the amplitude and phase of the scatter field from the underwater 
object. Computational methods developed for forward scatter 
are mostly analytical. The choice of the computation method 
depends on the signal frequency, type of object to be examined 
and the application of the simulated scatter viz. shape 
reconstruction, size estimation, identification/classification of 
the object. Mathematically, the approaches rely on integral 
formulations of the Helmholtz equation and with appropriate 
boundary conditions. In open literature several research papers 
have reported on scattering from underwater objects, for the 
application of analysing underwater imaging techniques.

Young1 presented a new method to generate the 3-D image 
of objects from the ramp response, which is called ‘approximate 
limiting surface’ technique. Zhang2, et al. developed a numerical 
method to obtain the ramp response for underwater objects in 
acoustic field, which requires limited data of frequency domain. 
A method for obtaining size and shape of the object using back 
scattered data in the high frequency was also reported3. The 
T-matrix method was originally introduced by Waterman4-5 

as a method for systematically solving the acoustic scattering 
problem of arbitrarily convex shaped targets with Neumann 
or Dirichlet boundary. Varadan6, et. al. extended the T-matrix 
method to the elastic wave scattering field, and this is the 
method employed in generating back scatter for identifying 
size of the object3. Size of the object is identified by low 
frequency information from the broad band information, while 
high frequency information is more important in identification 
of shape of the object.

The impulse response technique was introduced by 
Kennaugh7 for computing forward scatter and generally 
employed in inverse scattering applications. The analytical 
methods based on impulse response techniques have limited 
practical applications as the wide band returns from the 
underwater body are also highly influenced by media.

However, present trends in target strength computations 
are based on finite element method (FEM) and boundary 
element method (BEM), that are numerical methods8. 
The FEM and BEM methods are used in target strength 
computations. These can be applied for forward scattering 
computation as they can handle the fluid - body interactions. 
The extension of FEM has been applied to data simulation 
in forward scattering that is required in inverse applications. 
The limitations of these methods can be overcome by using 
the finite element time domain (FETD) method. This method 
is used in simulation of data for biomedical applications for 
velocity change which depends on density changes, but not 
for underwater applications12. So far, much work has not been 
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reported	in	open	literature	based	on	finite	element	time	domain	
(FETD) method particularly to simulate the forward scatter for 
underwater objects. This method is versatile to simulate back 
scatter for very narrow band as well as broad band, and any 
type	of	pulse	signal.	This	method	can	also	be	applied	efficiently	
to any arbitrary shape of scattering body and for mono-static as 
well as bi-static modes. 

In this paper, FETD method has been developed and 
applied to compute the scattering signal from an underwater 
object, as time series similar to data that collected in practical 
applications.	The	simulated	time	series	is	helpful	for	analyzing	
the	inverse	scattering	techniques.	The	scattering	information	has	
been computationally obtained for mono-static, bi-static mode 
at	different	frequencies	and	pulse	length,	etc.	The	simulation	
is based on plane wave approximation. Shape extracted by 
computing	the	profile	function,	from	the	computed	scatter	,is	
very close to the shape of the back scattering object selected 
for simulation. The time series computed of this method is 
found in very close agreement to experimental results. 

2. APPrOACh FOr SCAttErINg 
COmPUtAtION
A number of approaches for calculating scattering 

are available in literature3,12,13. The approach Krichhoff 
approximation is based on ray acoustics and the plane wave 
approximation	(PWA)	that	is	derived	from	radiation	problem	
are described here8.

2.1. basics
First,	we	consider	the	acoustic	wave	equation

2
1, , 0,p ii p tt
c

− =
                                                         

(1)

with subscripts i and t denoting the spatial and temporal 
differentiation. Fourier transformation leads to the elliptic 
Helmholtz	equation

2, 0,iip k p+ =                          (2)

where c is the speed of sound and k is the wave number k = ω/c 
with	circular	frequency	ω.	Equation	(2)	can	also	be	written	as

2 3( ) ( ) 0;p x k p x x∆ + = ∈
                                    (3)

                                                                      
the	time	harmonic	form:

ˆ ˆ;iwtp pe p= ∈                          (4)

is	used.	This	causes	a	Fourier	transformation	of	the	form:

( ) jwtf t e
+ ∞ −
−∞∫                                                                

(5)

Following this notation we obtain the fundamental 
solution	or	the	Green’s	function	in	free	space	of	Eqn	(2)	as

2, (
ikreii k X,rP) (X,rP)=

4 r

−
+ = −d

p
gg g  (6)  

 
where δ is the Dirac function, r is the Euclidean distance 
between the load point r  P

And	the	field	point	 ( )X r X rp= −
   and r p  is located on 

the	boundary	Γ	(Fig. 1).

2.2 high Frequency Approach by means of 
Kirchhoff Approaches (for first order)
In	BEM	approach,	a	coupled	system	of	equations	has	to	

be solved which usually means the inversion of a large matrix. 
In	the	high	frequency	range	a	BEM	approach	fails	because	of	
limited computer memory or limited computer time.

To	obtain	the	integral	equation	for	the	scattered	sound	field	
one	can	also	take	a	look	at	the	Helmholtz	integral	equation	just	
for	the	scattered	sound	field	pS for an exterior problem, which 
results in

( ) ( ) ds sC P p P i qvn p
nΓ

∂
= − ω + Γ
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gg

                         
(7)

Imagine that the obstacle is not existent. The interior 
integral formulation just for the incident wave pS obtained from 
the sound source in the absence of the obstacle can be written 
as

0( ) ( ) ds sC P p P i qvn p
nΓ

∂
= − ω + Γ
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gg                       (8)

where C0 is the complimentary surface integral to C subtraction 
of	Eqn	(7)	from	Eqn	(6)	and	making	use	of	the	superposition	of	
scattered	and	incident	field	similar	to	that	in	optics

0,i s
np p p= + =  0i s

n n nv v v= + =                              (9)

and 0 1C C+ =  
for P ∈Ω  leads to

 ( ) dsp P i qvn p
nΓ

∂
= ω + Γ
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gg                                 

(10)

However,	 in	 the	 high	 frequency	 region	 one	 can	 accept	
some simplifying assumptions to avoid the explicit process 
of	solving	a	system	of	equations.	This	 leads	 to	an	approach,	
which	is	comparable	with	a	BEM-field	point	calculation.

The	 first	 assumption	 is	 that	 the	 boundary	 Γ	 is	 divided	
into	a	part	 that	 is	 illuminated	Γill(visible) and another, which 
is	 non	 illuminated	Γnonill (nonvisible) by the source or in the 
bi-static case, resp. by the receiver. The boundary integration 
procedure is now reduced to the illuminated part only. Another 
assumption	 is	 the	use	of	 a	given	 reflection	coefficient R ∈  
on	 the	boundary	Γill,	 so	 that	 the	 scattered	sound	field	can	be	
written as

Figure 1. Domain Ω including source Q and scatterer Ω0.
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s ip Rp=                         (11)

The gradient in normal direction on this boundary is
s ip pR

n n
∂ ∂

= −
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2.3. Plane Wave Approximation
The	 plane	 wave	 approximation	 (PWA)	 was	 originally	

only used for radiation and not for scattering problems11. In the 
high-frequency	range,	it	is	assumed	that	pressure	and	normal	
velocity on the surface of the radiator are satisfying

                                                                                                              
 

,np cv= r
           

(14a) 

if the normal is directed into the exterior domain or
 ,np cv= −r                                                                (14b)

if the normal is directed into the interior domain.
This	PWA	is	only	true,	if	several	conditions	are	satisfied.
First, the wavelength has to be small compared with the •	
radius of curvature of the radiating surface.
Second,	the	wavelength	must	also	be	smaller	than	the	size	•	
of those areas of the surface, which are scattered sound 
pressure pS in	the	exterior	domain	Ω	vibrating	in	phase.
Third, the surface of the radiator should be convex, so that •	
the	radiated	sound	field	is	not	back-scattered	by	parts	of	
the radiator itself. 
In	 other	 words,	 multiple	 reflections	 are	 not	 allowed.	

Considering	the	integral	equation	for	the	scattered	sound	field	
pS for an exterior problem 

	The	integral	equation	for	the	scattered	sound	pressure	pS 
in	the	exterior	domain	Ω

( ) d ,
s

s sp gp P g p P
n nΓ

 ∂ ∂
= − − Γ ∈Ω ∂ ∂  

∫ ∫               (15)

or	 the	 equivalent	 integral	 Eqn	 (10)	 containing	 the	 total	
quantities

0i s
np p p= + = and 0i s

n n nv v v= + =                         (16)

( ) ,s p gp P g p p
nΓ

∂ ∂ = − − Γ ∈Ω ∂ ∂ ∫ ∫ d
                   

(17)

which	 is	 obtained	 by	 adding	 Eqn	 (15)	 and	 the	 interior	
integral	formulation	for	the	incident	wave	Eqn	(7).
Where Ω is the set of discretised elements of the structure and 
dΓ	is	corresponding	to	space	discretization	and	δg is the normal 
derivative of the greens function.

2.3.4 Rigid Case
For	simplicity,	first	consider	the	case	where	the	surface	of	

the scattering body is rigid, and hence the total normal surface 
velocity	vanishes	all	over	the	surface:

0i s
n n nv v v= + =

Equivalently,	(∂p/∂n)	=	0,	and	therefore,	the	integral	Eqn	
(16)	for	the	total	field	quantities	reduces	to

                                                         
 

(P) d ,s gp p P
n

∂
= − Γ ∈Ω

∂∫                                  
(18)

For obtaining an approximation for the yet unknown total 
pressure p = pi + pS, we need an estimation for the scattered 
pressure.	Due	to	the	boundary	condition	Eqn	(17),	the	scattered	
normal velocity on the surface is given by s i

n nv v= − Thus the 
scattering problem can be interpreted	as	an	equivalent	radiation	
problem as follows10:	

If the structure is assumed to vibrate with the negative 
normal velocity −, the radiated sound pressure is identical to 
the pressure pS scattered	from	Ω0 due to the incident wave pi. 
Now,	we	are	able	to	apply	the	PWA	Eqn	(14(b))	for	finding	a	
relationship between scattered pressure and normal velocity by 
assuming	that	in	the	high	frequency	range

( )s s i i
n n np cv c v cv= −r = −r − = r                                  (19)

By	 substituting	 assumption	Eqn	 (19)	 into	Eqn	 (18),	we	
immediately obtain

( ) ( ) d ,s i i
np P p cv P

nΓ

∂
= − + r Γ ∈Ω

∂∫ ∫
g

 
(20) 

	Equation	(20)	is	the	PWA	for	the	pressure	scattered	from	a	rigid	
structure by an incident wave pi. Clearly, the advantage of this 
approximation is that the scattered pressure can be calculated 
only by an integration over the surface of the scatterer. Thus, 
there	is	no	need	to	solve	an	integral	equation	or	a	linear	system	
of	equations	for	a	discretized	structure.

Now	compare	the	PWA	for	scattering	and	the	Kirchhoff	
approach	of	first	order	as	described	earlier.	There	are	several	
slightly different representations of the Kirchhoff approximation 
in the literature. Originally, the approach was suggested by 
Kirchhoff for treating the diffraction of light when passing 
through apertures.

For acoustics, the same procedure is explained 9 , if there is 
an aperture D. However, the total sound pressure on the screen 
depends on the boundary condition on the screen. For example, 
if	the	screen,	which	can	be	identified	with	the	scattering	object,	
is	 rigid,	 the	 reflection	 coefficient	R becomes 1, and hence a 
suitable approximation would be to assume that the pressure 
on the boundary is twice the incident pressure, just as it occurs 
in	the	Rayleigh	integral.	Considering	this	fact	into

Account
s ip Rp= and 

s ip pR
n n

∂ ∂
= −

∂ ∂                                        (21)

Inserting	 Eqn	 (21)	 into	 Eqn	 (16)	 and	 performing	 the	
surface	integral	only	over	the	illuminated	part	Γill of the surface 
Γ,	which	means	that (ein, n) > 0	,	we	get	Eqn	(20)

ill
( ) (1 ) (1 ) d

i
S ip gp P R g R p

n nΓ

 ∂ ∂
= − − − + Γ ∂ ∂  
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   (22)
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3. FINItE ELEmENt tImE dOmAIN mEthOd
In formulating the finite	 element	 time	 domain	 method 

(FETD) method, the signal at the receiver in time domain, is 
a	sequence	formed	by	integral	over	the	scattered	pressure,	at	
that	time-instance	of	the	sequence.	For	a	given	object	as	shown	
in Fig. 2. as the wave reaches the element, it is a function of 
sound	 velocity,	 transmission	 angle	 өt, grid	 size	 and	 element	
number. The scattered wave that reaches the receiver is also 
a	 function	 of	 sound	 velocity,	 receiver	 angle	 өr, grid	 size	 and	
element number.

Assuming sound speed as constant (c)	 and	defining	 the	
grid as

X: - (N/2 -1) d : (N/2 -1) d,	vector	of	size	N
Y: - (M/2 -1) d: (M/2 -1) d,	vector	of	size	M
For	 given	 transmission	 angle	 (өi	 ,Φr), the time delay 

(vector of NxM) due to incident is given by
Ίt = (Xcos(өt)+Ysin(Φt))/c
Similarly,	for	given	receiver	angle	(өr,	Φr), the time delay 

(vector of NxM) due to receiver is given by
Ίr = ( Xcos(өr)+Ysin(Φr))/c
The total time, an incident impulse reaches the receiver 

from different elements
Ί= Ίt+ Ίr (vector NxM)
For the transmitted signal sin(ωt), the signal at the receiver 

at time tⁿ is, [sin{ω(tⁿ-Ίmn)}] from each element. For a given 
angle	 өr, source assumed to be on the normal of the objects 
plane	Φr	computed	by	the	size	of	the	object.

The received signal from each element can thus be 
computed by using the total delay for that element. The incident 
wave	is	explicitly	specified	as	a	Dirichlet	condition	updated	at	
each	time	step.	The	wave	reflected	by	the	scatter	is	dependent	on	
the time the incident wave reaching the discretised element as 
well as area of the element. The phase of the wave is dependent 
on	time	it	reaches	the	element.	Relative	time	of	the	wave	from	
different elements depends on the relative distance travelled by 
the	wave	with	respect	to	the	first	element.	This	is	dependent	on	
the angle of transmission (θt) also. In a similar way the signal 
received is also time dependent and decided by the receiver 
angle (θr). Discretising the time t by high sampling rate, at nth 
time instance ( tⁿ)	a	number	of	reflected	signals	from	different	

elements arrives at the receiver. Therefore 
the signal at the receiver, at nth time instance 
( tⁿ) is integral of scattered pressure from 
different elements reaching the receiver at 
that	time	instance.	Replacing	the	integral

Rs(tⁿ)	=∑P(Ps(P))tⁿ        (26)
where Ps(P)	is	given	by	Eqn	(25)

The time series formed by the 
concatenation of the Rs(tⁿ) in time. With	
appropriate	 modification	 for	 mono-static	
and bi-static modes, and suitably selecting 
the number of elements and the sampling 
frequency,	 the	 received	 data	 are	 simulated.	
The	 verification	 of	 results	 was	 carried	 out	
by obtaining the object shape through ramp 
response	 technique,	 on	 the	 simulated	 time	
series.

The	 profile	 of	 the	 body	 is	 estimated	Figure 2.  Finite element grid of the object and  time delay.

and for R = 1, we obtain

ill
( ) 2 d ,S i gp P p P

nΓ

∂ = − Γ ∈Ω ∂ ∫ ∫    
              

     (23)

By	 comparing	 Eqns	 (20)	 and	 (23),	 it	 can	 be	 seen	 that	
the	Kirchhoff	 approach	 and	 the	 PWA	 becomes	 equal	 if	 two	
conditions	are	fulfilled:

(1) pi = i
ncvr

(2) The integration is only performed over the illuminated 
part of the scatterer.

However,	 the	 first	 assumption	pi = i
ncvr is only true, if 

an incident plane wave is considered, where the normal vector 
n of the scattering surface is parallel to the unit normal vector in the 
incidence direction of the incident wave ein. Clearly, this is only the 
case	for	perpendicular	incidence.	Thus,	if	the	PWA	is	restricted	to	the	
case of incident plane waves, we obtain

ill
( ) (1 ( , ) d ,s i

in
gp P p e n
nΓ

∂ = − + Γ ∂ ∫ ∫
In	 summary,	 the	 kirchhoff	 approximation	 and	 the	 PWA	

are	leading	to	the	same	result,	equivalent	to	that	of	simple	BEM	
for	high	frequency,	if	first	the	incident	wave	is	a	plane	wave,	
second, only the illuminated part of the surface is considered, 
and	 third,	 the	 variation	 of	 the	 reflection	 coefficient	with	 the	
angle of incidence is neglected. This also hence scattering with 
PWA	has	been	selected	for	computation	of	time	series	forward	
scatter waveform. 

 In short, considering the case where the surface of the 
scattering body is rigid and reference to Fig. 1 valid scattering 
formulation	of	Eqn	(20)	

sP (P) ( ) g / n d Pi i
np cv− Γ= + d d Γ ∈Ω∫ ∫         (24)

	Equation	(24)	is	the	PWA	for	the	pressure	scattered	from	
a rigid structure by an incident wave pi, considering	reflection	
coefficient	R=1,	for	rigid	structure

 
 

s
iil

P (P) (p gd / n) P
Γ

= − d Γ d ∈Ω∫∫          
(25)

Equation	 (25)	 is	 the	 pressure	 scattered	 from	 the	
illuminated	area	from	Eqn	(23).	The	above	method	is	extended	
for	simulation	of	time	series	of	forward	scatter	in	free	field.
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by ramp response and given as second integral of the impulse 
response26. This is given by 

PR(t)= )=∫ t ∫ t’PI(t’’)dt’’	dt’			 						(27)
Equation	(27)	is	used	for	extracting	the	profile	function.	

The	 ramp	 response	 technique	can	also	be	applied	 for	profile	
extraction with the band limited signal13. The object shapes 
simulated are illustrated shown in Fig. 3. Different combinations 
of projections and depressions on the body were simulated to 
study	the	effect	of	frequency	and	pulse	length	on	the	feature	
size.	For	the	verification	of	the	computed	scatter,	the	method	is	
applied on the object type half buried spheroid14. Fig. 1(a) time 
series calculated for half buried spheroid and Fig. 1(b) is the 
shape extracted from the simulated time series

4. rESULtS ANd dISCUSSION
The 2D underwater object selected for scattering is shown 

in Fig. 3. The forward scatter of object has been simulated 
using	FETD	method	for	single	cycle	for	different	frequencies.	
The	 profile	 function	 was	 obtained	 by	 using	 ramp	 response	
technique13.	 The	 shape	 of	 results	 obtained	 using	 profile	
function13 is very close to the object shape selected for scatter 
computation by FETD method. The several object shapes were 
used in simulations for scatter. The computation are carried 
out	for	different	pulse	parameters,	size	of	the	objects,	as	well	
as	different	sizes	of	the	spatial	grid	and	sampling	frequencies.	
The	parameters	used	in	simulation	are	i.e.	frequency;	25	KHz,	
transmitter angle qi = 850 and receiver angle qr = 850. The 
other parameters are taken like number of cycles, number of 
finite	elements	500	x	50,	Element	type	rectangular;	size	of	the	
body;10 x 1 meters and sound velocity =1500 m/s.

4.1 Mono-static Mode
In	Fig.	3,	a	rectangular	body	is	defined	as	the	basic	shape	

and another rectangle/triangle is either added or subtracted to 
obtain the desired shape. The parameters like, placement of 
the alteration (P.S), width of the shape (w), and alteration type  
(a+ or a-) are described along with the result. Figs. 5 to 
9	 indicates	 the	 time	 series	 generated	 and	 profile	 function	
extracted for mono-static case. Fig. 5(a) denotes time series 
from simulation for P.S = 200, w = 10, type = a- and number 

of	cycles	=1.	Fig.	5(b),	denotes	corresponding	profile	functions	
extracted from time series generated in Fig. 5(a). Fig. 6(a) 
shows the time series simulated for P.S = 200, w =10, type = 
a+	and	number	of	cycles	=	3.	And	Fig.	6(b)	presents	the	profile	
function extracted from Fig. 6(a). In Fig. 7(a) exhibits the time 
series from simulation for type = a- and number of cycles = 
13	and	mono-static	profile	function	extracted	from	Fig.	7(a)	is	
shown in Fig. 7(b). It is observed that with very narrow pulse, 
the time series generated clearly indicates the modulation of 
the	signal	by	the	shape	of	the	object	and	the	profile	extracted	is	
very close to the object shape. The effect of pulse width is seen 
as elongation of the feature shape and length of the time series 
shown	 in	Fig.	7.	The	profile	extracted	 indicates	 the	shape	of	
the	object.	For	the	Figs.	5(a)	to	9(a),	the	‘x	–axis’	corresponds	
to	time	(10	μs/sample,	re-sampled	by	a	factor	of	10),	given	as	
sample	number	and	 ‘y	–axis’	corresponds	 to	amplitude	 (mill	
volts) if the signal at the receiver. For the Figs 5(b) to 9(b), the 
‘x	–axis’	corresponds	to	length	of	the	object	(7.5	mm/sample	
re-sampled by a factor of 10), given as sample number and  
‘y	–axis’	corresponds	to	the	height	of	the	object.

4.2 Bi-static Mode
Bi-static	mode	has	elongated	the	feature	size	and	the	time	

series	 as	 shown	 in	Figs.	8(a)	 and	9(a).	The	Profile	 extracted	
indicates the shape of the object shown in Figs. 8(b) and 9(b). 
In bi-static case, the time series from simulation has been taken 
for the shape parameters P.S =200, w =10, type = a+ number 
of cycles =20 with the transmission angle q1= 850 and receiver 
angle q1=450.	 In	Fig.	8(b),	 the	profile	extracted	 indicates	 the	
shape	 of	 the	 object.	The	 profile	 extracted	 in	 bi-static	 shown	
in Fig. 9(b) has been calculated from the time series for shape 
parameters P.S1 =1000, w1=100, type1 =  a+ number P.S2 =1000, 
w2=100, type2 = a- number of cycles = 20, Transmission angle 
q1= 50 and receiver angle q1= 600.	However,		the	grid	size	was	

Figure 3. 2D shapes used for simulation of scatter from 
underwater objects.

Figure 4. (a) time series from simulation, (b) Profile function  
from Fig 1(a).
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used 4000 x 200.
From	results,	it	is	clear	that	the	computational	technique	

can be used in any shape of the object. However, function for 
profile	extraction	most	suited	on	impulse	incidence	may	not	be	
good	for	pulse	of	definite	time,	even	though	shape	of	object	can	
be made out visibly. From the above results, it is also observed 
that	shorter	pulse	gives	 the	better	definition	than	wide	pulse.	

Results	 also	 reveal	 improvement	 in	 the	 extracted	 profile	 by	
increasing the sampling rate (time resolution) and number of 
elements as shown in Fig. 9(b).

An experiment was conducted placing an object in 

 Figure 5. (a) Time series from simulation and (b) Profile function 
from Fig (a).
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Figure 6. (a) Time series from simulation and (b) Profile function 
from Fig (a).
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 Figure 7. (a) Time series from simulation and (b) Profile function 
from Fig (a).

Figure 8. (a) Time series from simulation and (b) Profile function 
from Fig (a).
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acoustic tank. length of the tank is 50 m breadth of the tank is 
18 m and depth of the tank is 20 m The tank had two moveable 
platforms	and	both	are	fitted	with	turn	tables.	The	object	was	
fabricated from steel,	as	per	shape	in	Fig.	10(a).	The	size	of	the	
object has been 1.0 m x 0.4 m, with a projection of 15 cm x 15 
cm. The object was held with a holding rod an attached to the 
turn	table.	The	unit	was	lowered	to	a	depth	of	five	meters.	The	
projector was lowered from the second platform. The receiving 
hydrophone was attached to the turn table of second platform 
the projector and receiver are also lowered to the same depth 
of	 five	meters	 as	 that	 of	 the	 object.	Transmission	 angle	q1= 
850 and receiver angle q2= 600 were set up with respect to the 
object.

A	pulse	of		20	cycles	duration,	with	frequency	of		200	kHz	
was	set	as	transmit	signal.	The	receiver	output	was	amplified	
and	captured	on	an	oscilloscope.	Reflected	signal	was	selected	
and recorded by appropriately setting the time, with respect to 
the trigger from the transmission unit. The sampling time is 
set as 0.1 µs per sample. The decimated time series is given in 
Fig.	10(c).	The	‘x–axis’	corresponds	to	time,	given	as	sample	
number time per sample is 0.5 µs (re-sampled by a factor of 
5).	 And	 ‘y–axis’	 corresponds	 to	 amplitude	 of	 the	 signal	 at	
the receiver. The time series of similar object simulated with 
FETD	is	given	in	Fig.	10(b).	The	‘x	–axis’	corresponds	to	time,	
given as sample number, with sampling time is set as 10 µs per 
sample.	The	‘y	–axis’	corresponds	to	amplitude	of	 the	signal	
at the receiver good similarity is seen with experimental result 
of the scaled model however minor differences may be due to 

the holding rod and sampling of the signal in the experiment 
setup. The signal amplitude in the experiment is scaled by the 
sensitivity of the hydrophone as seen in the Fig. 10(c). 

5. CONCLUSION
Finite element time domain method is used for generating 

the forward scatter. The results obtained from numerical 
computation	technique	is	evaluated	for	simulation	of	forward	
scatter for inverse scattering applications. The study indicates 
that, 

The discretaistion is dependent on the curvature or on the •	
feature	sizes	of	the	object,	to	be	identified	
The	 sampling	 frequency	 is	 dependent	 on	 the	 spatial	•	
sampling and on the sound velocity. 

Figure 9. (a) Time series from simulation, and (b) Profile function 
from Fig (a).
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 Figure 10. (a) Shape is used for experiment, (b) time series from 
simulation, and (c) time series from experiment.
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The	pulse	frequency	is	also	dependent	on	the	feature	sizes	•	
to	be	identified.	Evaluation	for	different	pulse	parameters	
is	carried	out	by	comparing	the	profile	function	extracted	
with that obtained by with single cycle (phase starting 
from -900 and ending with +900 ).
The	RMS	error	for	the	minimum	required	frequency	was	•	
approximately	10%	
Doubling	the	frequency	has	reduced	the	RMS	error	to	5%.	•	
Increasing the pulse width has resulted in the elongation •	
of	the	object	length	and	required	normalization	by	pulse	
length	to	estimate	the	size	of	the	object.
Profile	extraction	on	wide	pulse	has	to	be	carried	out	by	•	
different	technique,	as	the	scatter	has	the	effect	of	multiple	
profiles	of	the	object	superposed	and	the	time	series	thus	
obtained	was	smeared	profile.
The	RMS	error	for	the	broad	band	(LFM	and	SFM)	pulse	•	
order	 of	 1%,	 and	was	 less	 than	for	the	narrowband	pulse	
(7%).	This	is	also	evident	from	the	pulse	length	variation.
In bi-static mode the time series was elongated. However, •	
variation in signal strength is observed for different angels 
(corresponding to beam pattern). Except for this the 
observations were similar to mono static observations .
The	accuracy	of	the	simulations	with	medium	grid	sizes	

is	sufficient	for	inverse	applications.	The	grid	size	need	not	be	
very	high	and	depends	only	on	the	feature	sizes	of	the	object.	
A variable grid may be attempted where the curvatures of the 
body can be approximated by plane surface. This	 technique	
is mainly for computing forward scatter for inverse scattering 
applications. This may also has applications in generating 
forward scatter of very narrow and wide band signals of any 
pulse type and any object shape.
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