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1. IntroductIon
An unmanned air vehicle1 is used both for military and 

civilian applications. The mission of the UAV considered 
here is to navigate autonomously from an initial position to 
a final position using known way points2 or landmarks on the 
terrain using camera as the sensor and precisely estimate its 
position and orientation during its flight. The cameras capture 
the imagery of the underlying terrain containing the features 
and these features act as cues for navigation from one point 
to the other with an initial known position of the vehicle as 
the reference. The location of the UAV is computed using the 
relative location of the identical features in successive frames. 
In this manner with camera as the only sensor, it is possible 
to estimate the vehicle’s position and orientation even in the 
absence of information from other sensors, and hence, this type 
of navigation is called feature-based navigation1.

To accomplish this, registration of image frames is carried 
out which involves detection, extraction, and matching of 
features between successive frames. The most popular ones 
are the Harris Corner Detector3, and recently, scale-invariant 
feature transform (SIFT4), speeded up robust features (SURF5) 
and its variants. 

Lowe4 in 1999 proposed a revolutionary technique namely, 
SIFT descriptor, that is invariant to image translations and 
rotations, to scale changes (blur), and robust-to-illumination 

changes. It is also robust-to-orientation changes of the 
viewpoint up to 60 degree. Based on the Scale Space theory, 
the SIFT procedure simulates all Gaussian blurs and normalises 
local patches around scale-covariant image key points that are 
Laplacian extremes. But SIFT is computationally-intensive, 
and is not completely invariant to image rotation. Also, 
experimental evaluation shows SIFT seems to be more robust 
for target recognition, however, it presents large number of false 
positives over all its matches, thus reducing the accuracy.

Bay5, et al. proposed SURF descriptor, which is a fast 
performing scale and partially rotation-invariant interest point 
descriptor. The important speed gain is due to the integration 
of images, which drastically reduce the number of operations 
for small box convolutions, independent of the chosen scale. 
Even without any dedicated optimisation, an almost real-time 
computation without loss in performance is possible.

The type of feature detector however depends on the 
type of feature one needs to detect based on the application. 
Features are categorised as point features (features such as 
corners of geometrical structures or localised points of interest) 
and geometric features (features such as edges, straight lines, 
curves, profile or contours of structures). In the current work, 
point features particularly corners, junctions and blobs, are 
used. These features, are more prominent in an urban terrain 
and these also exhibit the properties needed by the application 
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like invariance to rotation, translation, scale and perspective 
changes. The current work is an extension to the framework6 
wherein the scale weights are automatically chosen to 
eventually enhance the detection and matching steps. 

The wavelet theory, in general, provides a multi-scaling 
model that allows in choosing the appropriate scale in 
accordance with the scale-space representation. The complex 
variant of the wavelet transform, the DTCWT7 considered here, 
has several advantages over discrete wavelet transforms, as 
explained further in Section 2. The Gabor filters (constructions 
similar to wavelets), on the other hand, have been used in 
certain applications to obtain scale and rotation invariance. 
These are robust to shifts, however these are non-decimated 
due to which they are time consuming.

2. duAl-trEE complEx  WAvElEt 
trAnSForm-bASEd ScAlE-SpAcE 
rEprESEntAtIon 
Dual-Tree Complex Wavelet Transforms7 (DTCWT) 

use a complex-valued filtering approach that decomposes the 
complex signals into real and imaginary parts in the transformed 
domain. The real and imaginary coefficients are used to compute 
amplitude and phase information that is needed to accurately 
describe the energy of oscillating functions. The DTCWT is 
better over than Discrete Wavelet Transforms (DWT) as it 
offers directional selectivity (six orientation subbands) and 
improved time-shifted sensitivity. 

Feature extraction using DTCWT is based on decimated 
dyadic decomposition (image down-sampling with a factor of 
2 at each level) of the given image as in Fig. 1(a), at several 
scales and six sub-bands, as in Fig. 1(b) for each scale to obtain 
complex wavelet energy coefficients. These energy coefficients 
are accumulated to obtain the so-called ‘accumulated energy 
map’, the peak of which is the ‘keypoint’ location, as shown in 
Fig. 1(c).  The prominence of the keypoint is determined using 
the strength of the feature. A sharp peak determine a salient 
feature with high energy content and a wide peak determines a 
coarser feature with less energy content of the keypoint. In Fig. 
1(c), it can be observed that there are few sharp peaks indicating 
their presence at multiple scales, and few wide peaks indicating 
their presence at coarser scales. However in certain images, 
only wider peaks may be present which indicate the existence 
of features at coarser scales requiring a precise scale. 

For example in Fig. 1(a), the aerial image contains a 
terrain with different geometrical features. The peak in the 
surface plot of Fig. 1(d) indicates a sharp feature in the image. 
This feature is the right intersection formed by the ‘H’ shaped 
feature in the image. However for other features, a wide peak is 
observed, indicating their presence at coarse scales.

Julien7, et al. proposed an energy model using DTCWT 
which is expressed as a product of the magnitude of wavelet 
coefficients ρ1, ρ2,  ρ3,  ρ4,  ρ5, and ρ6 at all six sub-bands pertaining 
to six orientations (15°, 45°, 75°, 105°, 135°, and 165°) as 
shown in Fig. 1(b). It is measured at each scale as per Eqn. 
(1). 
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Figure 1. (a) A stable, jitter-free image captured from a bottom looking camera of the uAv; (b) Equivalent of the image in the dual-
tree complex wavelet domain. The figure shows four scales of decomposition and six sub-bands for six orientations in each 
scale; (c) Keypoints deteceted; and (d) Surface plot of keypoints detected as energy coefficients on image.
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In the Eqn. (1), E(C) represent the wavelet energy 
coefficients, α and β are the scale weights, ρk is the magnitude 
of the wavelet coefficients, and s is the scale parameter ranging 
between 1…..n, with typical n=5. The parameters α and β are 
dimensionless quantities and indicate fine and coarse tuning 
parameters, respectively. The parameter α is the tunable gain 
to the scale responses. This parameter establishes those feature 
point responses that have improved time-shifted sensitivity. 
While the parameter β, is the power scaling parameter. This 
determines where the features exist. These parameters control 
the scale, and ultimately the accuracy of the detection step which 
is very crucial in matching features in successive images.        

In the research by Fauqueur, Julien7, et al. the values for 
α and β have been fixed. However it is observed that α and β 
need to be changed from image-to-image for better detection 
and localisation of features, which is time-consuming and a 
tedious process. It is observed from experiments performed on 
various image sets that α and β are well-defined in a certain 
confidence interval, viz., [0.1, 0.2] for β with a step size of 0.01 
and [0, 1] for α with a step size of 0.1. This confidence interval 
is established from experiments conducted on different types 
of real and synthetic images. The features detected outside this 
interval indicate image borders, degenerated image structures, 
etc., and hence, need to be discarded. This optimum range for 
α and β is determined based on the corresponding number of 
keypoints detected in this interval, as illustrated in Figs. 2(a) 
and 2(b) for the sample aerial image in Fig. 1(a).

From the plot in Fig. 2(a), it can be observed that for a 
noise-free image, no keypoints are detected for β < 0.1 while 
too many keypoints are detected for β > 0.2, and thereafter, the 
number of keypoints increase exponentially. Heuristically the 
number of keypoints is restricted to the order of 1000s. In the 
presence of noise, [Fig. 2(b)], the number of keypoints detected 
in the range between [0.1 0.2] are 100 and still sufficient to 
carry out the correspondence step. However it is noteworthy 
to observe that in both the plots, the number of keypoints 
detected, include both the true positives and the false positives. 
To ensure maximum number of true positives, the authors have 
proposed a method to choose the appropriate α and β so as to 
obtain a high precision-factor on the detected keypoints. It is 
also ensured that a minimum of six true positives are sufficient 
to estimate the transformation between the successive images8. 
Similar experiments were also carried to determine the 
optimum range for α. 

It is observed from the experiments that β provides an 
approximate region over which the features exist. It needs to 
be chosen appropriately for every image depending on various 
factors, eg, the content of the image, noise levels, etc. In certain 
images, rich features may not exist, therefore the values of β 
should be selected accordingly to detect optimum number of 
features, and thereby match with the successive images. Once 
the value of β is set, the fine-tunable gain α is tuned so that the 
feature responses which have improved time-shifted sensitivity, 
remain while the others are eliminated, reducing the number 
of redundant keypoints. The proposed method automatically 

selects α and β based on the precision-factor and recall-factor.
This eliminates the need to manually select the scale weights 
for every image. 

3. propoSEd AlgorIthm to EStImAtE 
ScAlE WEIght
The proposed algorithm extracts features using appropriate 

scale weights α and β based on better detection and localisation 
of features captured through precision and recall factors9 for 
the chosen scale weights α and β.

The precision-factor is a measure of the true positives 
(tp) detected among the total keypoints detected, as shown in 
Eqn. (2). This is considered to be an important factor for the 
application with a minimum of six true positives sufficient to 
carry out the matching between the successive frames. Ideally, 
the number of true positives must be equal to the total keypoints 
detected, which means that all the false positives are rejected 
successfully.

( ) tpprecision factor P
tp fp

− =
+∑                                  (2)

The recall-factor on the other hand considers the false 
negatives (fn) or the missed features, as shown in Eqn. (3). 

Figure 2. (a) plot of beta wrt the no. of keypoints to establish 
the range of beta for noise-free image  (b) Similar 
plot for a noisy image. 
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Ideally, no true positive should be missed. However, it is not 
essential for the application to determine all true positives or 
not miss any keypoint; nevertheless, a tolerable recall-factor 
should always be guaranteed.

( ) tprecall factor R
tp fn

− =
+∑                                       (3)

A perfect precision-factor of 1.0 means that every feature 
detected is correctly classified, but it doesn’t say anything about 
whether all true positives were detected. Similarly, a perfect 
recall-factor of 1.0 means all true positives were detected, but 
doesn’t say anything about how many remaining keypoints were 
classified incorrectly. To combine the effect of both precision-
factor and recall-factor, F-measure or balanced F-score is also 
used, which relates the two with harmonic mean, as given in 
Eqn. (4). A perfect F-measure score of 1.0 indicates a high 
precision  factor and high recall-factor, which means that all 
the features are correctly classified. However a high precision 
factor and a low recall-factor or a low precision factor and a 
high recall-factor indicates a low F-measure score.

*2* P RF measure
P R

− =
+

                                                 (4)

Here P is the precision factor and R is the Recall factor.
Algorithm: Automatic scale selection
Input: Image frame of size: (x*y)
output: Optimal scale weights
method:
Start: For each image, 
1. pre-process the image (remove any noise and jitter caused 

due to vehicle movement using existing techniques). 
2. Equalise the image histogram (adjust the illumination 

levels of the image using histogram equalisation 
technique).

3. Transform the image from spatial domain to complex 
wavelet domain using DTCWT.

4. For each scale s = 1, 2,…, m scales (until the coarsest 
scale has resolution of atleast 7 x 7),  do

 a.   Initialise α ←1 , 
 b.   for  β = 0.1 to 0.2 with  step size: 0.01, do

i. Compute the energy coefficient for every pixel of 
the image for all 6 sub-bands.

ii. Detect the keypoints based on a threshold on 
energy coefficients with the preset α.

iii. Calculate recall-factor (from Eqn. (3)).
iv. Repeat steps i to iii till β=0.2 is reached.
v. Select best β with high recall-factor among all 

scales.
 return best β
 c.   Set β to the value obtained from step 4b.
 d.   for  α =0 to 1 with  stepsize:0.1, do

i. Detect the keypoints based on a threshold on 
energy coefficients for the selected β.

ii. Calculate precision-factor, recall-factor and 
F-measure for all α (from Eqns. (2) (3) and (4)).

iii. Plot precision-factor,  recall-factor and 
F-measure 

iv. Repeat steps i to iii till α=1 is reached.
v. The region in the plot at which a high precision-

factor and a tolerable recall-factor is obtained 
(with true positives detected at least in the order 
of 10’s or above) till the solution point where all 
the three factors have a common value (intersect) 
can be selected as the best α.

  return best α
 e.   Return the corresponding scale weights α and β.
5. The keypoints generated for the selected scale weights 

are stored to match with the keypoints from successive 
images.

6. REpEAT steps 1-5 for different images.
Stop

4. ExpErImEntS
The experiments carried out to select the appropriate 

scale weights for DTCWT descriptors is described. A perfectly 
vertical downward-looking camera with negligible pitch and 
roll angles between consecutive images is assumed. The 
computation of pitch and roll angles demands the need of 
3-D information of features on the terrain to map these to the 
2-D points on the image. The datasets for the experiments are 
synthetically generated, simulator generated (classified data 
with ground truth) and real image sequences10,11 with different 
affine transformations (translation, rotation, and scaling).  

Experiments were performed with different values of α 
and β at every scale to measure the location of the detected 
keypoints. It is obvious that the energy of each pixel at any 
given scale is the inner product of all the sub-bands raised to 
the power of a factor β to detect and localise the features of 
interest. Experiments are conducted with varying values of α to 
detect features of interest, with a fixed value to β obtained from 
the previous step. precision-factor, recall-factor and F-measure  
scores are calculated at each run for every scale factor. Those 
values of α and β are selected whose precision-factor, recall-
factor, and F-measure scores lie in an optimum range as shown 
in Fig. 3(b). In Fig. 3(a), α is fixed to 1 and β is varied until 
all the true positives are detected or until the recall-factor of 1 
is reached. It is observed that β = 0.13 is the optimum value 
obtained for recall-factor of 1. With this fixed value of β, α is 
varied and the precision-factor, recall-factor, and F-measure 
score is calculated. 

A plot between precision-factor, recall-factor, and 
F-measure score against α is shown in Fig. 3(b). The region 
in the plot where a high precision-factor and a tolerable recall-
factor (with true positives detected at least in the order of 10’s 
or above) until the point where all the three factors have a 
common value (intersect) is considered as the best α. 

5. rESultS And dIScuSSIon
The precision-factor, recall-factor, and F-measure scores 

are calculated and verified using the ground truth from the 
simulator and hand-labeled points in synthetic images. This 
is done to verify the correctness of the algorithm. The scale 
weight selection method is illustrated with a sample noisy 
synthetic test case. Figure 4(a) is the noiseless image and 
Gaussian noise with fixed mean and increasing variance or 
sigma has been added to this image to obtain a noisy image as 
shown in Fig. 4(b). 
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As explained in Section 4, the influence of α and β on 
increasing sigma of the Gaussian noise is studied. Similar 
strategy is applied to obtain the best α and β values by plotting 

Figure 3.  Recall-factor curves for (a) fixed α=1, varying β; (b) Fixed β=0.13, varying α for a synthetic image.

the precision-factor, recall-factor, and F-measure score. The 
variance level of the noise is increased from 0.01 to 0.1 (or 
equivalently sigma from 0.1 to 0.3) at fixed mean. 

The intersection of the precision-factor and recall-factor 
curves in Fig. 4(d) (shown in pink dotted line) gives a low value 
for precision-factor and recall-factor due to the presence of 
noise or false positives. However from Fig. 4(c), it is observed 
that, at a value of β = 0.18 (for this example), the curve reaches 
a point beyond which, the number of false positives begin to 
increase considerably. This value of β gives a better precision-
factor and recall-factor than the intersection point (0.19, shown 
as light green dotted line) and hence β is chosen to be 0.18. 

A similar test is performed for varying values of α with 
fixed β = 0.18 obtained from the previous step. Figure 4(e) 

Figure 4. (a) Synthetic image without noise; (b) Noisy image, sigma=0.316; (c) β plotted against false positives at fixed α;  (d) β 
plotted against precision-factor and recall-factor;  (e) α plotted against false positives at fixed β;  (f) α plotted against 
precision-factor and recall-factor;  (g) Effect of noise on precision-factor and recall-factor for various values of sigma; 
and (h) Effect of noise on true positives and false positives.
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indicates the best α=0.8 and Fig. 4(f) (light green dotted line) 
indicates the corresponding best precision-factor and recall-
factor with the same justification for α as in the case for β. 

The Gaussian sigma level of the noise is increased each 
time to obtain the precision-factor, recall-factor, and F-measure 
curves, as shown in Figs. 4(g) and 4(h). The algorithm 
works well until sigma σ <= 0.1(shown as light green dotted 
line), beyond this, the precision-factor and recall-factor fall 
significantly. It can be observed from the plot in Fig. 4(g) that 
for sigma value = 0.26 and above, the precision-factor reaches 
the highest value of 1, however the recall-factor or the number 
of true positives at that particular point, as shown in Fig. 4(h), 
also needs to be monitored. A very low recall-factor and a high 
precision-factor indicate that very few true positives have been 
detected precisely, as shown in Fig. 4(h). 

The tradeoff between the precision-factor and the recall-
factor should be such that a high precision-factor should 
always be taken into account primarily while a tolerable 
compromise with the recall-factor should also be ascertained. 
In the experiments with different datasets, it has been observed 
that, a precision-factor > 0.8 and a recall-factor > 0.6 ensure 
the accuracy and robustness of the detector.

Similar experiments were performed on real images to 
detect features from a terrain containing dense geometrical 
structures. Figure 5(a) shows an aerial image containing a 
terrain with geometrical features. In this case and in general 
for real images, both the detection and matching step are 
performed to measure the precision-factor and recall-factor. 
The true positives, false positives, and false negatives were 
measured based on the correct matches, miss-matches and 
missed matches obtained after the matching step. Figures 5(b), 
5(c), and 5(d) show the keypoints detected by the proposed, 
SIFT and SURF methods, respectively. 

performance comparison12 is carried out for the proposed 
method against SIFT and SURF descriptors for precision-factor, 
recall-factor, and F-measure is done for the example aerial 
image, as shown in Fig. 6. The results, depicted in Fig. 6 reveal 
that the features have a precision-factor of 86.6 per cent for the 
proposed method as against 5.4 per cent and 8.3 per cent for 
SIFT and SURF, respectively. The F-measure is 71.37 per cent 
for the proposed method as against 10.31 per cent and 14.37 per 
cent for SIFT and SURF, respectively. The recall-factor of all 
the three techniques is also more or less close to each other. It 
is therefore evident that DTCWT-based proposed method has a 
better precision-factor and comparable recall-factor as against 
SIFT and SURF. For the application considered here, precision-
factor is the most important factor than recall-factor. Recall-
factor decides whether all the features are detected or not, and 
is essential for applications like target recognition13. However, 
a reasonable recall-factor (>70%) should always be ensured 
which also reflects on the number of true positives detected. 

Further experiments on real images (6 databases each 
with 30 images) were carried out on all the three descriptors. 
The experimental procedure involved detecting features 
and generating descriptors, feature descriptor matching, 
computing transformation model and observing the relative 
time computation for the three descriptors. Results have 
been tabulated as shown in Table 1 on the real datasets10,11. 

These datasets containe images taken over urban as well as 
forest regions. The complexity involved in forest region is 
that the features are not very prominent as in the case of urban 
geometrical structures. 

It is seen that DTCWT is best suited in terms of accuracy 
when compared to SIFT or SURF. An average error rate of 
7.61 per cent was obtained using the DTCWT descriptor for 
measuring yaw angle which is within the acceptable limits1, 
whareas SIFT and SURF descriptors gave an error rate beyond 
acceptable range. 

However wrt to time computation, DTCWT performed 
slower than SURF and SIFT as illustrated in Table 1. Nevertheless 
in case of real-time deployment, a hardware implementation15 
can bridge the performance gaps. moreover, it is reported14 
that DTCWT is already been used as a descriptor for real-time 
tracking in aerial images.

Figure 5. (a) Aerial image; (b) Keypoints detected using the  
proposed dtcWt-based method; (c) SIFt keypoints; 
(d) SurF keypoints.

(a) (b)

(c) (d)

Figure 6.  comparison of proposed dtcWt-based method, SIFt 
and SurF descriptors.
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6. concluSIon 
In this paper, automated scale weight selection technique 

for feature detection using DTCWT has been presented. The 
method is applied on images captured from an unmanned 
air vehicle navigating at a specified altitude. The scale-space 
representation presented here is based on the multi-scaling 
concept of the DTCWT. It is evident from experiments that 
the choice of appropriate scale weight parameters α and β is 
a crucial factor in detecting the features to register the images 
and estimate the position and orientation of the vehicle. The 
proposed method provides a solution to automatically choose 
α and β based on the precision-factor and recall-factor. 

The proposed method is compared with popular 
descriptors to measure its performance in terms of precision-
factor and recall-factor. It is observed that the proposed method 
has a higher precision-factor and tolerable recall-factor as 
compared to SIFT and SURF. The experiments showed that 
SIFT generated too many keypoints making it computationally 
intensive and thereby slow. While SURF detected and matched 
the keypoints faster than SIFT and worked well for real-time 
images, it was confined for a small range of rotation angles and 
it was not robust against rotation. DTCWT descriptor worked 
well for rotation angles between 0° and 90°, though slower 
than SURF. Though time, performance of the algorithm was 
recorded, it was not considered as a major factor in comparison 
as faster implementation can make all the three descriptors 
satisfy the time performance requirement. 

It is further intended to evaluate the use of scale-selection 
technique with the selected DTCWT descriptor to improve 
accuracy and time as a part of the future work.
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dataset and Frame nos.
transformation model ground truth (degree) computed transformation model (degree)

Yaw dtcWt SIFt SurF
(SENSEFLY) 4461 and 4462 5.03° 5.24° 3.44° -3.5°
(SENSEFLY) 44 60 and 4461 25.62° 25.7° 61.3° -13.6°
(SENSEFLY) 4456 and 4457 -7.4° -17.2° -10.42° 13.3°
(VOLVO) 2509 and 2511 -18.30 -20.70 -20.50 -13.60
(VOLVO) 2491 and 2492 15.30 12.70 17.20 9.520
(VOLVO) 2484 and 2485 10.30 9.160 20.30 5.170
Average error percentage (%) - Accuracy 7.61% 32.32% 72.6%
Average time computation (s) 38.23 34.99 25.33

table 1.  comparison of SIFt, SurF, and dtcWt for estimating the transformation model
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